Midterm #1 (20% + 5% Bonus Points)

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

Nov. 3rd, 2014

Any academic dishonesty will automatically lead to zero point.

1) (2%) Prove that \sqrt{p} is irrational for any prime p.

Solution:

If \sqrt{p} is not irrational for any prime p, we have $\sqrt{p} = \frac{a}{b}$, where $a, b \in \mathbb{Z}^+$ and gcd(a, b) = 1. Then $\sqrt{p} = \frac{a}{b} \Rightarrow p = \frac{a^2}{b^2} \Rightarrow pb^2 = a^2 \Rightarrow p|a^2 \Rightarrow p|a$. We know that $a = pk \exists k \in \mathbb{Z}^+$, since p|a. Besides, $pb^2 = a^2 = (pk)^2$, or $b^2 = pk^2$. Hence, $p|b^2 \Rightarrow p|b$. However, if p|a and p|b then gcd(a, b) = p > 1. Here we can see that our conclusion gcd(a, b) = p > 1 contradicts our assumption gcd(a, b) = 1 in the very beginning.

- (6%) Lucas numbers are closely related to Fibonacci numbers. This sequence is defined recursively as follow:
 - a) $L_0 = 2, L_1 = 1$
 - b) $L_{n+2} = L_{n+1} + L_n$ for $n \ge 0$

The following proofs should be described in detail to demonstrate your understanding of the Principle of Mathematical Induction

- a) Prove that $L_1^2 + L_1^2 + L_3^2 + \ldots + L_n^2 = L_n L_{n+1} 2, \ \forall n \in \mathbb{N}$
- b) Prove that $5F_{n+2} = L_{n+4} L_n$, $\forall n \in \mathbb{N}$, where F_n denotes the n^{th} Fibonacci number *Solution:*
 - a) We adopt the of Principle of Mathematical Induction to prove $L_1^2 + L_1^2 + L_3^2 + \ldots + L_n^2 = L_n L_{n+1} 2$. For n=1, we find $L_1^2 = 1^2 = 1 = 1 \times 3 - 2 = L_1 L_2 - 2$ We assume the result is true when n = k. This gives us $\sum_{i=1}^{k} L_i^2 = L_k L_{k+1} - 2$. Next, for n = k + 1 we find that $\sum_{i=1}^{k+1} L_i^2 = \sum_{i=1}^{k} L_i^2 + L_{k+1}^2 = L_k L_{k+1} - 2 + L_{k+1}^2 = L_{k+1} L_{k+2} - 2$

- b) We adopt the Alternative Form of Principle of Mathematical Induction to prove $5F_{n+2} = L_{n+4} - L_n$. For n = 0, $5F_{0+2} = 5F_2 = 5(1) = 5 = 7 - 2 = L_4 - L_0 = L_{0+4} = L_0$ For n = 1, $5F_{1+2} = 5F_3 = 5(2) = 10 = 11 - 1 = L_5 - L_1 = L_{1+4} = L_1$ Next, we assume the induction hypothesis – that is, that for some $k \ge 1$, $5F_{n+2} = L_{n+4} - L_n$ for all $n = 0, 1, 2, \dots, k - 1, k$. It then follows that for n = k + 1, $5F_{(k+1)+2} = 5F_{k+3} = 5(F_{k+2} + F_{k+1}) = 5(F_{k+2} + F_{(k-1)+2}) = 5F_{k+2} + 5F_{(k-1)+2} = (L_{k+4} - L_k) + (L_{(k-1)+4} - L_{(k-1)}) = (L_{k+4} - L_k) + (L_{k+3} - L_{k-1}) = (L_{k+4} + L_{k+3}) - (L_k + L_{k-1}) = L_{k+5} - L_{k+1} = L_{(k+1)+4} + L_{k+1}$. Hence, it then follows that $\forall n \in \mathbf{N}$ $5F_{n+2} = L_{n+4} - L_n$.
- 3) (3%) Use the law of set theory to simplify each of the following:

Hint:(a), (b) and (c) should be simplified to denote as a single set, such as A or B

- a) $A \cap (B A)$
- b) $(A \cap B) \cup (A \cap B \cap \overline{C} \cap D) \cup (\overline{A} \cap B)$
- c) $(A B) \cup (A \cap B)$

Solution:

- a) $A \cap (B A) = A \cap (B \cap \overline{A}) = B \cap (A \cap \overline{A}) = \emptyset$
- b) $(A \cap B) \cup (A \cap B \cap \overline{C} \cap D) \cup (\overline{A} \cap B) = (A \cap B) \cup (\overline{A} \cap B) = (A \cup \overline{A}) \cap B = B$

c)
$$(A - B) \cup (A \cap B) = (A \cap \overline{B}) \cup (A \cap B) = A \cap (\overline{B} \cup B) = A$$

4) (2 %) For $A = \{1, 2, 3, 4, 5, 6, 7\}$, determine the number of

- a) subsets of A
- b) nonempty proper subsets of A
- c) subsets of A containing four elements
- d) subsets of A containing 1 and 2
- e) subsets of A containing five elements, including 1 and 2
- f) subsets of A containing with an even number of elements

Solution:

a) 2⁷

- **b**) 126
- c) $\binom{7}{4}$

- d) 2⁵
- e) $\binom{5}{3}$
- f) $\binom{7}{0} + \binom{7}{2} + \binom{7}{4} + \binom{7}{6} = 64$
- 5) (3%) For primitive statements p, q:
 - a) Verify that $p \to [q \to (p \land q)]$ is a tautology.
 - b) Verify that $(p \lor q) \to [q \to q]$ is a tautology by using the results from part (a) along with the substitution rules and the laws of logic.
 - c) Is $(p \lor q) \to [q \to (p \land q)]$ a tautology?

Solution:

	p	q	$p \wedge q$	$q \to (p \land q)$	$p \to [q \to (p \land q)]$
	0	0	0	1	1
a)	0	1	1	0	0
	1	0	1	1	1
	1	1	1	1	1

b) Replace p to $(p \land q)$ in (a)

 $\Rightarrow (p \land q) \rightarrow [q \rightarrow ((p \land q) \land q)] \quad \text{(the substitution rules)}$ $\Rightarrow (p \land q) \rightarrow [q \rightarrow q] \quad \text{(the absorption law)}$ $\Rightarrow p \rightarrow [q \rightarrow (p \land q)] \Leftrightarrow (p \land q) \rightarrow [q \rightarrow q] \text{ is a tautology}$

 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline p & q & p \lor q & q \to (p \land q) & (p \land q) \to [q \to (p \land q)] \\ \hline 0 & 0 & 0 & 1 & 1 \\ \hline \end{array}$

c)

0

1

0

	9	$P \cdot q$	$q \rightarrow (p \land q)$	(P', q) (q (P', q))
)	0	0	1	1
)	1	1	0	0
	0	1	1	1
)	1	1	1	1

 (2%) Establish the validity of the following argument. You need to give reasons for the steps in your verification of the validity

 $(\neg p \lor q) \to r$ $r \to (s \lor t)$ $\neg s \land \neg u$ $\neg u \to \neg t$

 $\therefore p$

Solution:

- a) $\neg s \lor \neg u$ Premise
- b) $\neg u$ Step (a) and the Rule of Conjunctive Simplification

c) $\neg u \rightarrow \neg t$ Premise

- d) $\neg t$ Steps (b), (c) and the Rule of Detachment
- e) $\neg s$ Step (a) and the Rule of Conjunctive Simplification
- f) $\neg s \lor \neg t$ Steps (d), (e) and the Rule of Conjunction
- g) $r \to (s \lor t)$ Premise
- h) $\neg(s \lor t) \rightarrow \neg r$ Step (g) and $[r \rightarrow (s \lor t)] \leftrightarrow [\neg(s \lor t) \rightarrow r]$
- i) $(\neg s \land \neg t) \rightarrow \neg r$ Step (h) and DeMorgan's Laws
- j) $\neg r$ Steps (f), (i), and the Rule of Detachment
- k) $(\neg p \lor q) \rightarrow r$ Premise
- l) $\neg r \rightarrow \neg(\neg p \lor q)$ Step (k) and $[(\neg p \lor q) \rightarrow] \leftrightarrow [\neg r \rightarrow \neg(\neg p \lor q)]$
- m) $\neg r \rightarrow (p \land \neg q)$ Step (l) and DeMorgan's Laws and the Law of Double Negation
- n) $p \wedge \neg q$ Steps (j), (m) and Rule of Detachment
- o) $\therefore p$ Step (n) and the Rule of Conjunctive Simplification
- 7) (3%) Answer the following questions:
 - a) Determine the coefficient of $w^3x^2yz^2$ in $(2w x + 3y 2z)^8$
 - b) Determine the coefficient of $w^2x^2y^2z^2$ in $(v + w 2x + y + 5z + 3)^{12}$
 - c) Determine x if $\sum_{i=0}^{50} {50 \choose i} 8^i = x^{100}$

Solution:

a) $\binom{8}{3,2,1,2}(2)^3(-1)^2(3)(-2)^2$

- b) $\binom{12}{0,2,2,2,2,4}(1)^2(-2)^2(1)^2(5)^2(3)^4 = \frac{12!}{2!^4 \cdot 4!} \times (2)^2(5)^2(3)^4$ $\sum_{i=1}^{50} (1+i)^{50} (1+i)^{50} (1+i)^{2150} (1+i)^{2150}$
- c) $\sum_{i=50}^{50} {50 \choose i} 8^i = (1+8)^{50} = (9)^{50} = [(\pm 3)^2]^{50} = (\pm 3)^{100}$, so $x = \pm 3$
- 8) (3%) Answer the following questions:
 - a) In how many possible ways could a student answer a 10-question true-false test?
 - b) In how many ways can the student answer the above test if he/she can leave each question unanswered to avoid extra penalty for wrong answers?
 - c) In how many ways can the student answer the above test if he/she can leave exactly one question unanswered to avoid extra penalty for wrong answers?

Solution:

- a) With two choices per question, there are 2^{10} ways.
- b) With three choices per question, there are 3^{10} ways.
- c) The student selects the question to be unanswered our of 10 questions and answer the rest of them. $\binom{10}{1}2^9 \times 3$