Name:

Student ID:

Quiz #2 5%

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

This is a closed book test. Any academic dishonesty will automatically lead to zero point.

- 1) (2%) For primitive statements p, q, r, and s
 - a) Simplify the compound statement $[[[(p \land q) \land r] \lor [(p \land q) \land \neg r]] \lor \neg q] \rightarrow s$ to a statement without \neg , \lor , and \land .
 - b) Verify that $[(p \leftrightarrow q) \land (q \leftrightarrow r) \land (r \leftrightarrow p)] \Leftrightarrow [(p \rightarrow q) \land (q \rightarrow r) \land (r \rightarrow p)]$

Answer:

a) (1)[(p ∧ q) ∧ r] ∨ [(p ∧ q) ∧ ¬r] ⇔ (p ∧ q) ∧ (r ∨ ¬r) ⇔ (p ∧ q) ∧ T₀ ⇔ p ∧ q, where T₀ represents tautology in our expression.
(2) (p ∧ q) ∨ ¬q ⇔ (p ∨ ¬q) ∧ (q ∨ ¬q) ⇔ (p ∨ ¬q) ∧ T₀ ⇔ (p ∨ ¬q)
(3) (p ∨ ¬q) → s ⇔ (q → p) → s

Therefore, the given statement can be simplified to $(q \rightarrow p) \rightarrow s$.

	p	q	r	$(p \leftrightarrow q) \land (q \leftrightarrow r) \land (r \leftrightarrow p)$	$(p \to q) \land (q \to r) \land (r \to p)$
b)	0	0	0	1	1
	0	0	1	0	0
	0	1	0	0	0
	0	1	1	0	0
	1	0	0	0	0
	1	0	1	0	0
	1	1	0	0	0
	1	1	1	1	1

2) (1%) Proof the following argument is valid.

p $(p \to q)$ $r \to \neg q$ $s \lor r$

Therefore, $s \lor t$

Answer:

Steps

- a) p //Premise
- b) $(p \rightarrow q)$ //Premise
- c) $q \parallel$ Steps (a), (b), and the Rule of Detachment
- d) $r \rightarrow \neg q$ //Premise
- e) $q \to \neg r$ // Step (d) and $(r \to \neg q) \Leftrightarrow (\neg \neg q \to \neg r) \Leftrightarrow (q \to \neg r)$
- f) $\neg r$ // Steps (c), (e), and the Rule of Detachment
- g) $s \lor r$ // Premise
- h) s // Steps (f), (g), and the Rule of Disjunctive Syllogism
- i) Therefore, $s \lor t$ //Step (h) and the Rule of Disjunctive Amplification

3) (1%) Let p(x), q(x) denote the following open statements.

 $p(x): x \le 3, q(x): x + 1$ is odd

If the universe consists of all integers, what are the truth values?

- a) q(1)
- b) $\neg p(3)$
- c) $p(7) \lor q(7)$
- d) $p(3) \land q(4)$
- e) $\neg (p(-4) \lor q(-3))$
- f) $\neg p(-4) \land \neg q(-3)$

Answer:

- a) False
- b) False
- c) False
- d) True
- e) False
- f) False

4) (1%) Let n be an integer. Prove that n is odd if and only if 7n + 8 is odd.

Answer:

If n is odd, then n = 2k+1 for some (particular) integer k. Then 7n+8 = 7(2k+1)+8 = 14k+15 = 14k+14+1 = 2(7k+7)+1, so it follows from Definition 2.8 that 7n+8 is odd. Conversely, suppose that n is not odd. Then n is even, so n = 2t for some (particular) integer t. But then 7n+8 = 7(2t)+8 = 14t+8 = 2(7t+4), so it follows from Definition 2.8 that 7n+8 is even – that is, 7n+8 is not odd. Consequently, the converse follows by contraposition.

Definition 2.8 : Let n be an integer. We call n even if n is divisible by 2 – that is if there exists an integer r so that n = 2r. If n is not even, then we call n odd and find for this case that there exists an integer s where n = 2s + 1