Name:

Student ID:

Quiz #3 5%

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

This is a closed book test. Any academic dishonesty will automatically lead to zero point.

1) (1.5%) For $A = \{1, 2, 3, 4, 5, 6, 7\}$, determine the number of

- a) subsets of A
- b) nonempty proper subsets of A
- c) subsets of A containing three elements
- d) subsets of A containing five elements, including 1 and 2

e) subsets of A containing with an odd number of elements

Answer:

- a) 2⁷
- b) 126
- c) $\binom{7}{3}$
- d) $\binom{5}{3}$
- e) $\binom{7}{1} + \binom{7}{3} + \binom{7}{5} + \binom{7}{7} = 64$
- 2) (1%) For a given universe \mathcal{U} , let $A \subseteq \mathcal{U}$ where A is finite with $|\mathscr{P}(A)| = n$. If $B \subseteq \mathcal{U}$, how many subsets does B have, if
 - a) $B = A \cup \{x\}$, where $x \in \mathscr{U} A$?
 - b) $B = A \cup \{x, y\}$, where $x, y \in \mathscr{U} A$?
 - c) $B = A \cup \{x_1, x_2, x_3, \dots, x_k\}$, where $x_1, x_2, x_3, \dots, x_k \in \mathscr{U} A$?

Answer:

- a) 2*n*
- b) $2^2n = 4n$
- c) $2^{k}n$

- 3) (1%) If $A = \{a, b, d\}$, $B = \{d, x, y\}$, and $C = \{x, z\}$, how many proper subsets are there for the set
 - a) $(A \cap B) \cup C$?
 - b) $A \cap (B \cup C)$?

Answer:

- a) $(A \cap B) \cup C = \{d, x, z\}$ which has $2^3 1 = 7$ proper sets.
- b) $A \cap (B \cup C) = \{d\}$ which has 1 proper set.
- 4) (2%) How many permutations of the 26 different letters of the alphabet contain
 - a) either the pattern "OUT" or the pattern "DIG" ?
 - b) neither the pattern "MAN" nor the pattern "NAT" ?

Answer:

- a) There are 24! permutations containing each of thje patterns "OUT" and "DIG". There are 22! permutations containing both patterns. Hence, there are $2 \times 24! - 22!$ permutations containing either the pattern "OUT" or the pattern "DIG".
- b) There are 26! permutations in total. There are 24! permutations that contain each of the pattern "MAN" and "NAT", and 23! that contain both (i.e. "MANT"). Hence, there are 2 × 24! - 23! permutations that contain either "MAN" or "NAT", and 26! - (2 × 24! - 23!) permutations that contain neither pattern.