Name:

Student ID:

Quiz #6 5+2%

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan This is a closed book test. Any academic dishonesty will automatically lead to zero point.

- 1) (2%) For $\Sigma = \{0, 1\}$ describe the strings in A^* for each of the following language $A \subseteq \Sigma^*$
 - a) {01}
 - b) {000}
 - c) $\{0,010\}$
 - d) $\{1, 10\}$

Solution:

- a) Here A^* consist of all strings x of even length where if $x \neq \lambda$ then x starts with 0 and ends with 1. The symbols (0 and 1) can be alternative.
- b) In this case A^* contains strings made up of 3n 0's for $n \in N$
- c) Here a string $x \in A^*$ if and only if
 - 1) x is a string of n 0's for $n \in N$

2) x is a string that starts and ends with 0, and it has at least one 1 without consecutive 1's

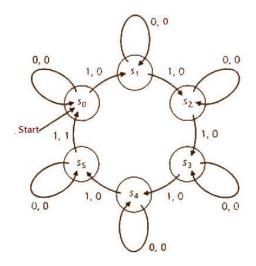
- d) For this case A^* consist of the following:
 - 1) Any string of n 1's for $n \in N$
 - 2) Any string that starts with 1 and contain at least one 0 without consecutive 0's
- 2) (1%) Show that it is not possible to construct a finite state machine which recognizes precisely those sequences in the language A = {0ⁱ1^j|i, j ∈ Z⁺, i > j}. Here the alphabet for A is Σ = {0,1}

Solution:

Suppose the contrary and let the machine have n states, for some $n \in Z^+$. Consider the input string $0^{n+1}1^n$. We expect the output here to be $0^{n+1}1^n$. As the 0's in this input

string are processed we obtain n + 1 states $s_1, s_2, s_3, \dots s_n s_{n+1}$ from the function ν . By the Pigeonhole Principle, there are two states s_i, s_j where i < j but $s_i = s_j$. Hence, if the states s_m where $i + 1 \le m \le j$ are removed and it's along with their inputs of 0, then this machine will recognize the sequence $0^{n+1-(j-i)}1^n$ where $n + 1 - (j - i) \le n$. However, this string $0^{n+1-(j-i)}1^n \notin A$

3) (2%) Let M = {S, I, O, ν, ω} be a finite state machine with I = O = {0,1}. S, ν, and ω are determined by the state diagram shown in Fig. 1





- a) Find the output for the input string x=0110111011
- b) Give the transition table for this finite state machine
- c) Starting in state s_0 , if the output for an input string x is 0000001. Please show all possibilities for x
- d) Describe in words what this finite machine does

a) 0000000010

		ν	ν	ω	ω
b)		0	1	0	0
	s_0	s_0	s_1	0	0
	s_1	s_1	s_2	0	0
	s_2	s_2	s_3	0	0
	s_3	s_3	s_4	0	0
	s_4	s_4	s_5	0	0
	s_5	s_5	s_0	0	1

- c) $\omega(x, s_0) = 0000001$ for x =
 - i) 1111101
 - ii) 1111011
 - iii) 1110111
 - iv) 1101111
 - v) 1011111
 - vi) 0111111
 - vii) 0111111
- d) The machine recognizes the occurrence of a sixth 1, a 12^{th} 1 in an input x