Name:

Student ID:

Quiz #9 5%

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

This is a closed book test. Any academic dishonesty will automatically lead to zero point.

(1%) Find the number of generating function for the number of integer solutions to the equation: c₁ + c₂ + c₃ + c₄ = 20, where −3 ≤ c₁, −3 ≤ c₂, −5 ≤ c₃ ≤ 5, and 0 ≤ c₄ Solution:

 $(3+c_1) + (3+c_2) + (5+c_3) + c_4 = 31$

 $\Rightarrow x_1 + x_2 + x_3 + x_4 = 31, \ 0 \le x_1, x_2, x_3, \ 0 \le x_4 \le 10.$

Consequently, the answer is the coefficient of x^{31} in the generating function:

 $(1 + x + x^2 + \dots)^3 (1 + x + x^2 + \dots + x^{10}).$

2) (1%) In how many ways can Tracy select n marbles from a large bag of blue, red, and yellow marbles (all of the same size) if the selection must include an even number of blue ones ?

Solution:

We need the coefficient of x^n in $(1+x+x^2+x^3\cdots)^2(1+x^2+x^4+\cdots) = (\frac{1}{1-x})^2(\frac{1}{1-x^2}) = (\frac{1}{1-x})^3(\frac{1}{1+x})$. Using a partial fraction decomposition, $(\frac{1}{1-x})^3(\frac{1}{1+x}) = \frac{1/8}{1+x} + \frac{1/8}{1-x} + \frac{1/4}{(1-x)^2} + \frac{1/2}{(1-x)^3}$, where the coefficient of x^n is $(-1)^n \frac{1}{8} + \frac{1}{8} + \frac{1}{4} \binom{-2}{n} (-1)^n + \frac{1}{2} \binom{-3}{n} (-1)^n$.

3) (2%) Find the generating function for the number of integer solutions of: (a) 2w + 3x + 5y + 7z = n, 0 ≤ w, x, y, z and (b) 2w + 3x + 5y + 7z = n, 0 ≤ w, 4 ≤ x, y, 5 ≤ z. Solution:

a)
$$\frac{1}{1-x^2} \cdot \frac{1}{1-x^3} \cdot \frac{1}{1-x^5} \cdot \frac{1}{1-x^7}$$

b) $\frac{1}{1-x^2} \cdot \frac{x}{1-x^3} \cdot \frac{x}{1-x^5} \cdot \frac{x^4}{1-x^7}$

- 4) (1%) In each of the following, the function f(x) is the exponential generating function for the sequence a₀, a₁, a₂..., whereas the function g(x) is the exponential generating function for the sequence b₀, b₁, b₂.... Express g(x) in terms of f(x) if
 - a) b₃ = 3
 b_n = a_n, where n ∈ N, n ≠ 3
 b) a_n = 5ⁿ, where n ∈ N
 b₃ = -1
 b_n = a_n, where n ∈ N, n ≠ 3

Solution:

- a) $g(x) = f(x) + (3 a_3)(x^3/3!)$
- b) $g(x) = f(x) + (-1 a_3)(x^3/3!)$