Solution Week 1

Ex 1.1 & 1.2: 15, 22, 28, 32, 33 Ex 1.3: 13, 16, 25, 29, 34 Ex 1.4: 7, 17, 24, 26, 28

Ex 1.1 & 1.2: (15)

- * Here we must place a, b, c, d in the positions denoted by x: e x e x e x e x e x.
- * By the rule of product, there are 4! ways to do this.

Ex 1.1 & 1.2: (22)

- * Case1: The leading digit is 5: (6!)/(2!)
- * Case2: The leading digit is $6: (6!)/(2!)^2$
- * Case3: The leading digit is 7: $(6!)/(2!)^2$
- * In total there are [(6!)/(2!)][1+(1/2)+(1/2)] = 720 such position integers n.

- a) The for loops for *i*, *j*, *k* are executed 12, 6, 8 times, respectively. The value of counter is 0 + 12x1 + 6x2 + 8x3 = 48.
- b) By the rule of sum.

Ex 1.1 & 1.2: (32)

- a) For positive integers n, k where n = 3k, then n!/(3!)^k is the number of ways to arrange the following n objects x₁,x₁,x₁,x₂,x₂,x₂,...,x_k,x_k,x_k. Therefore, it must be an integer.
- b) If *n*, *k* are positive integers with n = mk, then $n!/(m!)^k$ is an integer.

Ex 1.1 & 1.2: (33)

- a) With 2 choices per question. There are $2^{10} = 1024$ ways.
- b) With 3 choices per question. There are 3^{10} ways.

Ex 1.3: (13)

- The letters M,I,I,I,P,P,I can be arranged in [7!/(4!2!)] ways. Each arrangement provides 8 locations for placing the 4 S's in nonconsecutive ways.
- Four of S's locations from 8 possible locations can be selected in ⁸₄ ways. Hence, total number of these arrangements is ⁸₄ [7!/(4!2!)].

Ex 1.3: (16)

a) 97
b) -5
c) 12
d) 0
e) 3

a)
$$\binom{4}{1,1,2} = 12$$

b) $\binom{4}{0,1,1,2} = 12$
c) $\binom{4}{1,1,2} (2)(-1)(-1)^2 = -24$
d) $\binom{4}{1,1,2} (-2)(3)^2 = -216$
e) $\binom{8}{3,2,1,2} (2)^3 (-1)^2 (3)(-2)^2 = 161280$

*
$$n\binom{m+n}{m}$$

= $n\frac{(m+n)!}{m!n!}$
= $\frac{(m+n)!}{m!(n-1)!}$
= $(m+1)\frac{(m+n)!}{(m+1)(m!)(n-1)!}$
= $(m+1)\binom{m+n}{m+1}$

Ex 1.3: (34)

 a) procedure Select2 (i,j: positive integers)
 begin for i := 1 to 5 do for j := i + 1 to 6 do print (i,j)

end

b) procedure Select3 (*i*,*j*,*k*: positive integers) begin for i := 1 to 4 do for j := i + 1 to 5 do for k := j + 1 to 6 do print (*i*,*j*,*k*)

end

a)
$$\binom{4+32-1}{32} = \binom{35}{32}$$

b) $\binom{4+28-1}{28} = \binom{31}{28}$
c) $\binom{4+8-1}{8} = \binom{11}{8}$

d) 1

e) Let y_i = x_i+2, 1 ≤ i ≤ 4. The number of solutions to the given problem is then the same as the number of solutions to y₁+y₂+y₃+y₄ = 40, 0 ≤ y_i, 1 ≤ i ≤ 4. (⁴⁺⁴⁰⁻¹₄₀) = (⁴³₄₀).
f) (⁴⁺²⁸⁻¹₂₈) - (⁴⁺³⁻¹₃) = (³¹₂₈) - (⁶₃), where the term (⁶₃) accounts for the solutions where 26 ≤ x₄.

a)
$$\binom{5+12-1}{12} = \binom{16}{12}$$

b) 5^{12}

Ex 1.4: (24)

a) procedure Selection1 (*i*,*j*: nonnegative integers)begin

end

b) Let $y_i = x_i + 2 \ge 0$. It's equal to solve $y_1 + y_2 + y_3 + y_4 = 12$, where $y_i \ge 0$ for $1 \le i \le 4$. The algorithm is like (a).

Ex 1.4: (26)

- * Each such composition can be factored as *k* times a composition of *m*.
- Consequently, there are 2^{m-1} compositions of n, where n
 = mk and each summand in a composition is a multiple of k.

Ex 1.4: (28.a)

A string of this type consists of x_1 1's followed by x_2 0's followed by x_3 1's followed by x_4 0's followed by x_5 1's followed by x_6 0's, where, $x_1+x_2+x_3+x_4+x_5+x_6=n$, $x_1,x_6\geq 0$, $x_2,x_3,x_4,x_5\geq 0$.

The number of solutions to this equation equals the number of solutions to $y_1+y_2+y_3+y_4+y_5+y_6=n-4$, where $y_i \ge 0$ for $1 \le i \le 6$. This

number is $\binom{6+(n-4)-1}{n-4} = \binom{n+1}{5}$.

Ex 1.4: (28.b)

For n ≥ 6 , a string with this structure has x_1 1's followed by x_2 0's followed by x_3 1's ... followed by x_8 0's, where $x_1+x_2+\ldots+x_8=n, x_1,x_8 \geq 0, x_2,\ldots,x_7 > 0$

The number of solutions to this equation equals the number of solutions to $y_1 + y_2 + ... + y_8 = n-6$, where $y_i \ge 0$ for $1 \le i \le 8$. This number is $\binom{8+(n-6)-1}{n-6} = \binom{n+1}{7}$.

Ex 1.4: $(28.c)_{1/2}$

(c) There are 2^n strings in total and n + 1 strings where there are k 1's followed by n - k0's, for k = 0, 1, 2, ..., n. These n + 1 strings contain no occurrences of 01, so there are $2^n - (n + 1) = 2^n - \binom{n+1}{1}$ strings that contain at least one occurrence of 01. There are $\binom{n+1}{3}$ strings that contain (exactly) one occurrence of 01, $\binom{n+1}{5}$ strings with (exactly) two occurrences, $\binom{n+1}{7}$ strings with (exactly) three occurrences, ..., and for (i) n odd, we can have at most $\frac{n-1}{2}$ occurrences of 01. The number of strings with $\frac{n-1}{2}$ occurrences of 01 is the number of integer solutions for

 $x_1 + x_2 + \cdots + x_{n+1} = n, \ x_1, x_{n+1} \ge 0, \quad x_2, x_3, \ldots, x_n > 0.$

This is the same as the number of integer solutions for

 $y_1 + y_2 + \dots + y_{n+1} = n - (n-1) = 1$, where $y_1, y_2, \dots, y_{n+1} \ge 0$. This number is $\binom{(n+1)+1-1}{1} = \binom{n+1}{1} = \binom{n+1}{n} = \binom{n+1}{2\binom{n-1}{2}+1}$.

Ex 1.4: $(28.c)_{2/2}$

(ii) n even, we can have at most $\frac{n}{2}$ occurrences of 01. The number of strings with $\frac{n}{2}$ occurrences of 01 is the number of integer solutions for

$$x_1 + x_2 + \cdots + x_{n+2} = n, \ x_1, x_{n+2} \ge 0, \ x_2, x_3, \ldots, x_n > 0.$$

This is the same as the number of integer solutions for

 $y_1 + y_2 + \dots + y_{n+2} = n - n = 0$, where $y_i \ge 0$ for $1 \le i \le n + 2$.

This number is $\binom{(n+2)+0-1}{0} = \binom{n+1}{0} = \binom{n+1}{n+1} = \binom{n+1}{2\binom{n}{2}+1}$. Consequently,

$$2^{n} - \binom{n+1}{1} = \binom{n+1}{3} + \binom{n+1}{5} + \dots + \begin{cases} \binom{n+1}{n}, & n \text{ odd} \\ \binom{n+1}{n+1}, & n \text{ even}, \end{cases}$$

and the result follows.