Solution Week 1

Ex 1.1 & 1.2: 15, 22, 28, 32, 33 Ex 1.3: 13, 16, 25, 29, 34 Ex 1.4: 7, 17, 24, 26, 28

Ex 1.1 & 1.2: (15)

- Here we must place a, b, c, d in the positions denoted by *x*: e *x* e *x* e *x* e *x* e.
- By the rule of product, there are 4! ways to do this.

Ex 1.1 & 1.2: (22)

- Case1: The leading digit is 5: (6!)/(2!)
- * Case2: The leading digit is 6: $(6!)/(2!)^2$
- \ast Case3: The leading digit is $7: (6!)/(2!)^2$
- $*$ In total there are $[(6!)/(2!)][1+(1/2)+(1/2)]=720$ such position integers n.

- a) The for loops for *i*, *j*, *k* are executed 12, 6, 8 times, respectively. The value of counter is $0 + 12x1 + 6x2 + 8x3 = 48.$
- b) By the rule of sum.

Ex 1.1 & 1.2: (32)

- a) For positive integers *n*, *k* where $n = 3k$, then $n!/(3!)^k$ is the number of ways to arrange the following *ⁿ* objects $x_1, x_1, x_1, x_2, x_2, x_2, \ldots, x_k, x_k, x_k$. Therefore, it must be an integer.
- b) If *n*, *k* are positive integers with $n = mk$, then $n!/(m!)^k$ is an integer.

Ex 1.1 & 1.2: (33)

- a) With 2 choices per question. There are $2^{10} = 1024$ ways.
- b) With 3 choices per question. There are 3^{10} ways.

Ex 1.3: (13)

- The letters M,I,I,I,P,P,I can be arranged in [7!/(4!2!)] ways. Each arrangement provides 8 locations for placing the 4 S's in nonconsecutive ways.
- Four of S's locations from 8 possible locations can be selected in $\binom{8}{4}$ ways. Hence, total number of these arrangements is $\binom{8}{4}$ [7!/(4!2!)].

Ex 1.3: (16)

 $a)$ 97 b) -5 c) 12 $d) 0$ $e) 3$

a)
$$
\binom{4}{1,1,2} = 12
$$

\nb) $\binom{4}{0,1,1,2} = 12$
\nc) $\binom{4}{1,1,2} (2)(-1)(-1)^2 = -24$
\nd) $\binom{4}{1,1,2} (-2)(3)^2 = -216$
\ne) $\binom{8}{3,2,1,2} (2)^3(-1)^2(3)(-2)^2 = 161280$

*
$$
n {m+n \choose m}
$$

\n
$$
= n \frac{(m+n)!}{m! n!}
$$
\n
$$
= \frac{(m+n)!}{m! (n-1)!}
$$
\n
$$
= (m+1) \frac{(m+n)!}{(m+1)(m!)(n-1)!}
$$
\n
$$
= (m+1) {m+n \choose m+1}
$$

Ex 1.3: (34)

a) procedure *Select2* (*i,j*: positive integers) **begin for** *i* := 1 to 5 **do for** *j* := *i* + 1 to 6 **do print** (i,j)

end

b) procedure *Select3* (*i,j,k*: positive integers) **begin for** *i* := 1 to 4 **do for** *j* := *i* + 1 to 5 **do for** *k* := *j* + 1 to 6 **do print** (i,j,k)

end

$$
Ex 1.4: (7)
$$

a) $\binom{4+32-1}{32} = \binom{35}{32}$ b) $\binom{4+28-1}{28} = \binom{31}{28}$ c) $\binom{4+8-1}{8} = \binom{11}{8}$

 $d) 1$

e) Let $y_i = x_i + 2$, $1 \le i \le 4$. The number of solutions to the given problem is then the same as the number of solutions to $y_1 + y_2 + y_3 + y_4 = 40, 0 \le y_i$ $1 \leq i \leq 4$. $\binom{4+40-1}{40} = \binom{43}{40}$. f) $\binom{4+28-1}{28} - \binom{4+3-1}{2} = \binom{31}{28} - \binom{6}{2}$ where the term $\binom{6}{3}$ accounts for the solutions where $26 \le x_4$.

a)
$$
\binom{5+12-1}{12} = \binom{16}{12}
$$

b) 5^{12}

Ex 1.4: (24)

a) procedure Selection1 (*i,j*: nonnegative integers) **begin for** *i* := 0 to 10 **do**

> **for** *j* := 0 to 10 – *i* **do print** (*i,j*,10-*i-j*)

end

b) Let $y_i = x_i + 2 \ge 0$. It's equal to solve $y_1 + y_2 + y_3 + y_4 = 12$, where $y_i \ge 0$ for $1 \le i \le 4$. The algorithm is like (a).

Ex 1.4: (26)

- Each such composition can be factored as *k* times a composition of *^m*.
- Consequently, there are 2*m*-1 compositions of *ⁿ*, where *ⁿ* = *mk* and each summand in a composition is a multiple of *k*.

Ex 1.4: (28.a)

A string of this type consists of x_1 1's followed by x_2 0's followed by x_3 1's followed by x_4 0's followed by x_5 1's followed by x_6 0's, where, $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = n$, $x_1, x_6 \ge 0$, *x 2,^x 3,x4,x ⁵*>0.

The number of solutions to this equation equals the number of solutions to *y*₁+y₂+y₃+y₄+y₅+y₆=n-4, where y_i≥0 for 1≤*i*≤6. This number is $\binom{6+(n-4)-1}{n-4}$ ൌ $\binom{n+1}{5}$.

Ex 1.4: (28.b)

For n≥6, a string with this structure has $x₁$ 1's followed by x_2 0's followed by x_3 1's ... followed by x_8 0's, where $x_1+x_2+\ldots+x_8=n, x_1, x_8\geq 0, x_2,\ldots,x_7>0$

The number of solutions to this equation equals the number of solutions to $y_1+y_2+...+y_8=n-6$, where $y_i\geq 0$ for 1≤*i*≤8. This number is $\binom{8+(n-6)-1}{n-6} = \binom{n+1}{7}$.

Ex 1.4. $(28.c)_{1/2}$

(c) There are 2^n strings in total and $n + 1$ strings where there are k 1's followed by $n - k$ $0's$, for $k = 0, 1, 2, ..., n$. These $n + 1$ strings contain no occurrences of 01, so there are $2^{n} - (n + 1) = 2^{n} - {n+1 \choose 1}$ strings that contain at least one occurrence of 01. There are $\binom{n+1}{3}$ strings that contain (exactly) one occurrence of 01, $\binom{n+1}{5}$ strings with (exactly) two occurrences, $\binom{n+1}{7}$ strings with (exactly) three occurrences, ..., and for (i) *n* odd, we can have at most $\frac{n-1}{2}$ occurrences of 01. The number of strings with $\frac{n-1}{2}$ occurrences of 01 is the number of integer solutions for

 $x_1 + x_2 + \cdots + x_{n+1} = n$, $x_1, x_{n+1} \ge 0$, $x_2, x_3, \ldots, x_n > 0$.

This is the same as the number of integer solutions for

 $y_1 + y_2 + \cdots + y_{n+1} = n - (n-1) = 1$, where $y_1, y_2, \ldots, y_{n+1} \ge 0$. This number is $\binom{(n+1)+1-1}{1} = \binom{n+1}{1} = \binom{n+1}{n} = \binom{n+1}{2(n-1)+1}.$

$\overline{\text{Ex } 1.4: (28.c)_{2/2}}$

(ii) *n* even, we can have at most $\frac{n}{2}$ occurrences of 01. The number of strings with $\frac{n}{2}$ occurrences of 01 is the number of integer solutions for

$$
x_1+x_2+\cdots+x_{n+2}=n, \ \ x_1,x_{n+2}\geq 0, \quad x_2,x_3,\ldots,x_n>0.
$$

This is the same as the number of integer solutions for

 $y_1 + y_2 + \cdots + y_{n+2} = n - n = 0$, where $y_i \ge 0$ for $1 \le i \le n+2$.

This number is $\binom{(n+2)+0-1}{0} = \binom{n+1}{0} = \binom{n+1}{n+1} = \binom{n+1}{2(\frac{n}{2})+1}$. Consequently,

$$
2^{n} - {n+1 \choose 1} = {n+1 \choose 3} + {n+1 \choose 5} + \cdots + \left\{ \begin{array}{c} {n+1 \choose n} , n \text{ odd} \\ {n+1 \choose n+1} , n \text{ even}, \end{array} \right.
$$

and the result follows.