Name:

Student ID:

Quiz #11 (4%)

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

This is a take-home quiz. Please turn in your answer to the TA by June 12th, 2014. Please make appointment with the TA if you want your graded quiz back.

(1%) How many path are there from b to g?
 Solution: 6

2) (1%) (a) How many spanning subgraphs are there for the graph G? (b) how many of them are connected subgraphs?Solution:

3) (1%) Let G₁ = (V₁, E₁) and G₂ = (V₂, E₂) be loop-free undirected connected graphs in the figure. (a) Determine |V₁|, |E₁|, |V₂|, and |E₂|. (b) Find the degree of each vertex in V₁ and V₂. (c) Are G₁ and G₂ isomorphic? Solution:

a)
$$|V_1| = 8, |E_1| = 14, |V_2| = 8, and |E_2| = 14$$

b) $|V_1| \Rightarrow \begin{cases} deg(a) = 3deg(b) = 4deg(c) = 4deg(d) = 3\\ deg(e) = 3deg(f) = 4deg(g) = 4deg(h) = 3\\ (V_2) \Rightarrow \begin{cases} deg(s) = 3deg(t) = 4deg(u) = 4deg(v) = 3\\ deg(w) = 4deg(x) = 3deg(y) = 4deg(z) = 4\\ deg(z) = 4deg(z) = 4deg(z) = 4\end{cases}$
c) No.

4) (1%) (a) How many vertices and how many edges are there in the complete bipartite graphs K_{4,7}, K_{7,10}, and K_{m,n}, where m, n are positive integers. (b) if K_{m,6} has 72 edges, what is m?

Solution:

	V	E
$K_{4,7}$	11	28
$K_{7,10}$	17	70
$K_{m,n}$	m + n	$m \cdot n$

a)

b) $M \cdot 6 = 72 \Rightarrow M = 12$