Name:

Student ID:

Quiz #3 (5% + 1% Bonus Point)

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

3:30 - 3:50 p.m., March 31st, 2013

This is a closed book test. Any academic dishonesty will automatically lead to zero point.

1) (2%) Determine $|A \cup B \cup C|$, when |A| = 10, |B| = 100, and |C| = 1000 and

- a) (0.5%) $A \cap B = A \cap C = B \cap C = \emptyset$.
- b) (0.5%) $A \subseteq B \subseteq C$.
- c) (1%) $|A \cap B| = |A \cap C| = |B \cap C| = 3$ and $|A \cap B \cap C| = 1$.

Solution:

$$|A \cup B \cup C| = |A| + |B| + |C| - (|A \cap B| + |B \cap C| + |A \cap C|) + |A \cap B \cap C|$$

- a) $|A \cup B \cup C| = (10 + 100 + 1000) = 1110$
- b) $|A \cup B \cup C| = (10 + 100 + 1000) (10 + 100 + 10) + 10 = 1000$
- c) $|A \cup B \cup C| = (10 + 100 + 1000) (3 + 3 + 3) + 1 = 1102$
- (2%) Randomly choose 3 different numbers from {1, 2, 3, 4, ..., 20}, what is the probability their sum is even?

Solution:

There are 2 cases when the sum of 3 different numbers is even:

(1) All 3 numbers are even. There are $\binom{10}{3} = 120$ ways

(2) 1 chosen number is even, and 2 are odd. There are $\binom{10}{2}\binom{10}{1} = 450$ ways

Therefore, the probability is $\frac{120+450}{\binom{20}{3}} = \frac{1}{2}$

- 3) (2%) Prove or disprove:
 - a) For sets $A, B, C \subseteq \mathbb{Z}, A \cap C = B \cap C \Rightarrow A = B$.

b) For sets $A, B, C \subseteq \mathbb{Z}^+, [(A \cap C = B \cap C) \land (A \cup C = B \cup C)] \Rightarrow A = B.$

Solution:

a) Let $A = \{1, 2\}, B = \{1, 3\}, C = \{1\}$. Then $A \cap C = B \cap C$, but $A \neq B$.

b) Let $x \in A \Rightarrow x \in A \cup C = B \cup C$. So $x \in B$ or $x \in C$. If $x \in C$, then $x \in A \cap C = B \cap C$, so $x \in B$. In either case, $x \in B$, so $A \subseteq B$. Likewise, let $y \in B \Rightarrow y \in B \cup C = A \cup C$. So $y \in A$ or $y \in C$. If $y \in C$, then $y \in B \cap C = A \cap C$, so $y \in A$. In either case, $y \in A$, so $B \subseteq A$. Since $A \subseteq B$ and $B \subseteq A$, therefore A = B.