Name: Shu-Ting Wang Student ID: TA

Quiz #7 (5% + 1% Bonus Point)

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

2:20 - 2:40 p.m., May 14th, 2014

This is a closed book test. Any academic dishonesty will automatically lead to zero point.

 (2%) For A = {a, b, c, d, e, f}, each graph, or digraph, in the figure, represents a relation *R* on A. Write each relation *R* ⊆ A × A as a relation matrix M(*R*).

Solution:

a)
$$\mathscr{R} = (a, b), (b, a), (a, e), (e, a), (b, c), (c, b), (b, d), (d, b), (b, e), (e, b), (d, e), (e, d), (d, f), (f, d)$$

c)
$$\mathscr{R} = (a, a), (a, b), (b, a), (c, d), (d, c)(d, e), (e, d), (d, f), (f, d), (e, f), (f, e)$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$
d) $\mathscr{R} = (b, a), (b, c), (c, b)(b, e), (c, d), (e, d)$

2) (2%) Draw the Hasse diagram for the poset $(\mathscr{P}(\mathscr{U}), \subseteq)$, where $\mathscr{U} = \{1, 2, 3, 4\}$.

Solution:

3) (2%) Apply the minimization process to each finite state machine in the figure.Solution:

a)
$$P_1: \{s_1, s_4\}, \{s_2, s_3, s_5\}$$

 $(\nu(s_1, 0) = s_4)E_1(\nu(s_4, 0) = s_1 \text{ but } (\nu(s_1, 1) = s_1)\neg E_1(\nu(s_4, 1) = s_3) \text{ , so } s_1\neg E_2s_4$
 $(\nu(s_2, 1) = s_3)E_1(\nu(s_3, 1) = s_4, \text{ so } s_2\neg E_2s_3$
 $(\nu(s_2, 0) = s_3)E_1(\nu(s_5, 0) = s_3, \text{ and } (\nu(s_2, 1) = s_3)E_1(\nu(s_5, 1) = s_3, \text{ so } s_2E_2s_5$
Since $s_2\neg E_2s_3$ and $s_2E_2s_5$. It follows that $s_2\neg E_2s_5$
Hence, P_2 is given by $P_2: \{s_1\}, \{s_2, s_5\}, \{s_3\}, \{s_4\}$
 $(\nu(s_2, x) = s_3)E_2(\nu(s_5, x) = s_3 \text{ for } x = 0, 1. \text{ Hence, } s_2E_2s_5 \text{ and } P_2 = P_3$

b) State s_2 and s_5 are equivalent

	v		ω	
	0	1	0	1
<i>s</i> ₁	<i>S</i> 4	<i>s</i> ₁	0	1
s2	\$3	\$3	1	0
\$3	<i>s</i> ₁	S_4	1	0
<i>S</i> 4	s ₁	\$3	0	1
\$5	\$3	\$3	1	0

	ν		ω	
	0	1	0	1
<i>s</i> ₁	<i>s</i> ₆	\$3	0	0
<i>s</i> ₂	\$5	<i>s</i> ₄	0	1
<i>s</i> ₃	56	<i>s</i> ₂	1	1
<i>S</i> 4	<i>S</i> 4	\$3	1	0
\$5	S2	<i>s</i> ₄	0	1
<i>S</i> ₆	<i>S</i> 4	56	0	0