Department of Computer Science National Tsing Hua University

CS 2336: Discrete Mathematics **Chapter 10 Recurrence Relations Instructor: Cheng-Hsin Hsu**

Outline

10.1 The First-Order Linear Recurrence Relation 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients 10.3 The Nonhomogeneous Recurrence Relation 10.4 The Method of Generating Functions

Geometric Progression

- **For a sequence, we want to write** a_n **as a function of** the prior terms $a_0, a_1, ..., a_{n-1}$
- § Geometric progression: an infinite sequence with a common ratio
	- For example: 5, 15, 45, 135, ..., where $a_{n+1} = 3a_n$, and $a_0 = 5$
- \bullet $a_{n+1} = 3a_n$ is the recurring relation, 3 is the common ratio, and a_0 helps us to determine the right sequence
	- Many sequences can be generated with a recurring realtion

Terminology

- A recurrence relation is first order linear homogeneous with constant coefficients, if a_{n+1} (current term) only depends on *an* (previous term)
- A known term a_0 or a_1 , is called the boundary condition
	- If a_0 equals to a constant, it is also called initial condition
- Example, $a_{n+1} = 3a_n$, $a_0 = 5$
	- Unique solution: $a_n = 5(3^n)$
	- No longer need to compute a_5 before getting a_6

General Form and Example

- The unique solution of recurrence relation $a_{n+1} = da_n$, where $n>=0$, *d* is a constant and $a_0= A$ is
	- $-a_n = Ad^n, n \geq 0$
- **Ex** 10.1: Solve $a_n = 7a_{n-1}$, where $n \geq -1$ and $a_2 = 98$ - $A_0=98/7/7=2 \rightarrow a_n=2*7^n$
- Ex 10.2: A bank pays 6% annual interests, and compounding the interest monthly. If we deposit \$1000, how much will the deposit worth a year later?

 $-p_{n+1}=p_n+0.005p_n, p_0=1000, p_n=1000*1.005^n, p_{12}=1062$

Converting Nonlinear to Linear

- **•** Ex 10.4: Find a_{12} if $a_{n+1}^2 = 5a_n^2$, where $a_n > 0$ for $n > = 0$ and a_0 =2
	- The relation is not linear!
	- What if we let $b_n = a_n^2$?
	- $-b_0 = 4, b_n = 4 \cdot 5^n$
	- $-b_{12}=976562500$, $a_{12}=31250$

General First-Order Linear Recurrence

- The general form is a_{n+1} + $ca_n = f(n)$, $n \ge 0$, where *c* is a constant and $f(n)$ is a function on nonnegative integers
- $F(n)=0$ for all $n \rightarrow$ homogeneous recurrence
	- Nonhomogeneous, otherwise
- Many techniques are useful for solving nonhomogeneous problems, but non of them can solve all such problems

Bubble Sort

Figure 10.3

Bubble Sort (cont.)

 \blacksquare Let a_n be the number of comparisons to sort n numbers using bubble sort

$$
- a_n = a_{n-1} + (n-1), n \geq 2, a_1 = 0
$$

■ It is linear first-order, but the term n-1 makes it nonhomogeneous

$$
-a_{I}=0
$$

- $-a_2 = a_1 + (2-1) = 1$
- $a_3 = a_2 + (3-1) = 1+2$
- *…..*
- In general $a_n = 1 + 2 + ... + (n-1) = (n^2 n)/2$

More Examples

- **EX** 10.6: Find the pattern of: 0, 2, 6, 12, 20, 30, 42,
	- See no pattern, try to compute the difference: 2, 4, 6, 8, 10, 12, $\ldots \rightarrow a_n-a_{n-1}=2n, n>=1, a_0=0$
	- $a_n-a_0=2+4+6+...+2n=2[n(n+1)/2]=n^2+n$
	- Compared against Ex. 9.6
- Ex 10.7 (variable coefficient): Solve the relation $a_n = n \cdot a_{n-1}$, where $n \geq -1$ and $a_0 = 1$ - $a_0=1$, $a_1=1$ * $a_0=1$, $a_2=2$ * $a_1=2$, $a_3=3$ * $a_2=6$, ...
	- In fact, $a_n=n!$

…

Outline

10.1 The First-Order Linear Recurrence Relation 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients 10.3 The Nonhomogeneous Recurrence Relation 10.4 The Method of Generating Functions

Order K Linear Recurrence

- Let $k \in \mathbb{Z}^+, C_0(\neq 0), C_1, \ldots, C_k(\neq 0)$ be real numbers
	- $C_0a_n + C_1a_{n-1} + \cdots + C_ka_{n-k} = f(n), n \geq k$ is a linear recurrence relation with constant coefficients of order *k*
- **•** If $f(n)=0$ for all $n>=0$, the relation is homogeneous, otherwise, it's nonhomogeneous
- § We study homogeneous relation of order two in this section

$$
-C_0a_n + C_1a_{n-1} + C_2a_{n-2} = 0, n \ge 2
$$

Order 2 Linear Recurrence

§ In particular, we look for a solution in the form $a_n = cr^n, c \neq 0, r \neq 0$

$$
C_0 a_n + C_1 a_{n-1} + C_2 a_{n-2} = 0, \ n \ge 2
$$

$$
-C_0cr^n + C_1cr^{n-1} + C_2cr^{n-2} = 0
$$

- $C_0 r^2 + C_1 r^1 + C_2 = 0$ \leftarrow characteristic equation
- **Three cases of the roots** $r_1, r_2 \leftarrow$ **characteristic roots**
	- (a) distinct real numbers
	- (b) complex conjugate pair
	- (c) same real number

Case A Example 1

- **•** Ex 10.9: Solve recurrence relation $a_n + a_{n-1} 6a_{n-2} = 0$, where $n \geq 2$ and $a_0 = -1$, $a_1 = 8$
	- *crn+crn-1-6crn-2=0*
	- $r^2+r-6=0 \rightarrow r=2,-3$
- Then $a_n = 2^n$ or $a_n = (-3)^n$ are two indep. solutions!
- In fact, we can write $a_n = c_1 2^n + c_2 (-3)^n$
- $-1 = c_1 + c_2$ and $8 = 2c_1 3c_2$ $\rightarrow c_1 = 1$ and $c_2 = -2$
- Solution: $a_n = 2^n 2(-3)^n$

Case A Example 2

- **Ex** 10.10: Solve the recurrence relation $F_{n+2} = F_n$ F_{+I} ^{+*F_n*, where F_{0} =0, F_{I} =1}
- Let $F_n = cr^n$, we have $r^2 r 1 = 0$, characteristic roots are $1 \pm \sqrt{5}$ \rightarrow let § We have $\frac{n}{1 \pm \sqrt{5}}$ 2 $F_n = c_1($ $\frac{1}{1 + \sqrt{5}}$ $(\frac{1}{2})^n + c_2$ $\frac{1-\sqrt{5}}{1-\sqrt{5}}$ $\frac{1}{2}$ ⁿ $c_1 =$ 1 $\overline{\sqrt{5}}$ $c_2 = -\frac{1}{\sqrt{2}}$ $\overline{\sqrt{5}}$

Solution:
$$
F_n = \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n - \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^n
$$

Case A Example 3

- Ex 10.14: Legal arithmetic expressions without parentheses $\leftarrow 0, 1, 2, ..., 9$ and $+, *, \prime$
- \blacksquare Let a_n be the no. legal expressions with n symbols
	- $a_1=10$, $a_2=100$, but for $n>3$?
	- Case I: if *x* is an expr. with *n*-*1* symbols, and the last symbol is a digit. $10a_{n-1}$ way to add a symbol to it
	- Case II: if y is an expr. with n-2 symbols, we have 29 ways to add an operator and a digit to it

$$
- a_n = 10a_{n-1} + 29a_{n-2}
$$

■ **Solution:**
$$
a_n = \frac{5}{3\sqrt{6}}[(5+3\sqrt{6})^n - (5-3\sqrt{6})^n]
$$

Case B Example

Ex 10.20: Determine $(1 + \sqrt{3}i)^{10}$

$$
-r = 2, \ \theta = \pi/3 \ \rightarrow 1 + \sqrt{3}i = 2(\cos(\pi/3) + i\sin(\pi/3)))
$$

- We know $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$

- Hence, $(1 + \sqrt{3}i)^{10} = 2^{10}(\cos(4\pi/3) + i\sin(4\pi/3))$ $\sqrt{3}$ $= 2^{10}(\frac{-1}{2})$ $\frac{\sqrt{3}}{2}i)=(-2)^9(\frac{1}{y}+\sqrt{3}i)$ $\frac{1}{2}$ - $(1,\sqrt{3})$ θ \cdot X

Case B Example (cont.)

- **Ex** 10.21: Solve $a_n=2a_{n-1}-2a_{n-2}$, where $a_0=1$, $a_1=2$
- Let $a_n = cr^n$ → $r^2-2r+2=0$ → roots are $1 \pm i$

• Let
$$
a_n = c_1(1 + i)^n + c_2(1 - i)^n
$$

\n- $1 + i = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4)), 1 - i = \sqrt{2}(\cos(\pi/4) - i\sin(\pi/4))$
\n $a_n = (\sqrt{2})^n(x_1 \cos(n\pi/4) + x_2 \sin(n\pi/4)), x_1 = c_1 + c_2, x_2 = (c_1 - c_2)i$

■ **Solution:** $a_n = (\sqrt{2})^n(cos(n\pi/4) + sin(n\pi/4))$

Case C Example

- **Ex** 10.23: Solve $a_{n+2} = 4a_{n+1} 4a_n$, $a_0 = 0$, $a_1 = 3$
	- Characteristic equation $r^2-4r+4=0 \rightarrow r=2, 2$
	- 2^n and 2^n are not indep \rightarrow let's try some $g(n)2^n$, where $g(n)$ is not a constant
	- We have $g(n+2)2^{n+2}=4g(n+1)2^{n+1}-4g(n)2^n$ \rightarrow one solution is $g(n)=n$, although there are many other solutions
	- That is, *n2n* is another indep. Solution
	- The general solution is then: $a_n = c_1 2^n + c_2 n 2^n$
	- With $a_0=1$, $a_1=3$, we have $a_n=2^{n}+n2^{n-1}$
- Can be generalized to multiple repeated roots

Outline

10.1 The First-Order Linear Recurrence Relation 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients 10.3 The Nonhomogeneous Recurrence Relation 10.4 The Method of Generating Functions

Nonhomogeneous

§ We consider the recurrence relations

$$
a_0 + C_1 a_{n-1} = f(n), n \ge 1
$$

$$
a_n + C_1 a_{n-1} + C_2 a_{n-2} = f(n), n \ge 2
$$

- C₁, C₂ are constant, and f(n) is not zero. \leftarrow nonhomogeneous relations.
- There are no standard way to solve all nonhomogeneous relations, we discuss techniques for certain types of problems

First Example

• General: Order 1, with C₁=-1
$$
\rightarrow a_n - a_{n-1} = f(n)
$$

\n $a_1 = a_0 + f(1)$
\n $a_2 = a_1 + f(2) = a_0 + f(1) + f(2)$
\n........
\n $a_n = a_{n-1} + f(n) = a_0 + \sum_{i=1}^n f(i)$

- We can solve it if we know how to deal with the last term

Example 16 Ex 10.25: Solve
$$
a_n-a_{n-1} = 3n^2
$$
, $a_0 = 7$
\n- $a_n = a_0 + \sum_{i=1}^n f(i) = 7 + 3 \sum_{i=1}^n i^2 = 7 + \frac{1}{2}(n)(n+1)(2n+1)$

■ What is we are not that lucky?

Undetermined Coefficients

- Method of undetermined coefficients: for both firstand second-order nonhomogeneous relations
	- Rely on solving the associated homogeneous relation
- Let $a_n^{(h)}$ be the general solution of associated homogeneous relation, and $a_n^{(p)}$ be the particular solution to the nonhomogeneous relation

 $a_n = a_n^{(h)} + a_n^{(p)}$ is the final solution

■ We already know how to find $a_n^{(h)}$, to determine $a_n^{(p)}$ we use the form of $f(n)$ to guess a form of $a_n^{(p)}$

Undetermined Coefficients

- **•** Ex 10.26: Solve $a_n 3a_{n-1} = 5(7^n)$, where $n \ge 1, a_0 = 2$
	- The solution to the homogeneous part is $a_n^{(h)} = c(3^n)$
	- $f(n) = 5(7^n)$ \rightarrow We look for $a_n^{(p)}$ in the form $A(7^n)$

- That is,
$$
A(7^n) - 3A(7^{n-1}) = 5(7^n)
$$

\n⇒ $7A - 3A = 5(7) \Rightarrow A = 35/2$
\n⇒ $a_n^{(p)} = (35/4)7^n = (5/4)7^{n+1}$

- Final solution is $a_n = c(3^n) + (5/4)7^{n+1}$
- With $a_0 = 2$, we have $c = -27/4$

Another Example

- **•** Ex 10.27: Solve $a_n 3a_{n-1} = 5(3^n)$, where $n \ge 1, a_0 = 2$
	- Associated homogeneous relation $a_n^{(h)} = c(3^n)$
	- Since $f(n) = 5(3^n)$, we try $a_n^{(p)} = A(3^n)$ \leftarrow but it's not indep. to $a_n^{(h)}$
	- Try $a_n^{(h)} = Bn(3^n)$ instead
	- We have $Bn(3^n) 3B(n-1)(3^{n-1}) = 5(3^n) \Rightarrow Bn B(n-1) = 5 \Rightarrow B = 5$
	- The final solution is $a_n = c(3^n) + 5n(3^n)$
	- $-$ With $a_0=2$, we have $c=2$

Generalized Results

- First order: $a_n + C_1 a_{n-1} = kr^n$
	- If r^n is not a solution of the associated homogeneous relation, then $a_n^{(p)} = Ar^n$, where *A* is a constant
	- Otherwise, $a_n^{(p)} = Bnr^n$, where *B* is a constant
- **Second order:** $a_n + C_1 a_{n-1} + C_2 a_{n-2} = kr^n$
	- $a_n^{(p)} = Ar^n$, if r^n is not a solution of the associated homogeneous relation
	- $a_n^{(p)} = Bnr^n$, if $a_n^{(h)} = c_1r^n + c_2r_1^n$ $a_n^{(p)} = Cn^2r^n$, if $a_n^{(h)} = (c_1 + c_2n)r^n$

First Order, Example

- **Ex** 10.28: Tower of Hanoi with *n* disks. Let a_n be the minimum number of moves it takes to transfer *n* disks from peg 1 to peg 3
	- Move n-1 disks from peg 1 to peg 2
	- Move the largest disk from peg 1 to peg 3
	- Move n-1 disks from peg 2 to peg 3
	- Hence, $a_{n+1} = 2a_n + 1$ and $a_0 = 0$
	- We know $a_n^{(h)} = c(2^n)$, and $f(n) = 1^n$ is not a solution of the homogeneous relation \rightarrow we set $a_n^{(p)} = A(1^n) = A$
	- A=2A+1 \rightarrow A=-1 \rightarrow $a_n = c(2^n) 1$, with $a_0 = 0 \Rightarrow c = 1$

Second Order, Example

Ex 10.34: Solve the recurrence relation a_{n+2} -4 a_n $a_{1}+1+3a_{n}=-200, n>=0, a_{0}=3000, a_{1}=3300$

 $a_n^{(h)} = c_1(3^n) + c_2(1^n)$

 $-f(n) = -100 = -100(1^n)$ the same as the solution of the associated homogeneous relation

- Let
$$
a_n^{(p)} = An \rightarrow A(n+2) - 4A(n+1) + 3An = -200 \Rightarrow A = 100
$$

- Hence,
$$
a_n = c_1(3^n) + c_2 + 100n
$$

- With a_0 =3000, a_1 =3300, c_1 =100, c_2 =2900

Systematic Approach

- Consider $C_0a_n + C_1a_{n-1} + C_2a_{n-2} + \cdots + C_ka_{n-k} = f(n)$
	- If f(n) is a constant multiple of one of the forms in Table 10.2, and is not a solution of the associated homogeneous relation, then use $a_n^{(p)}$ given in the table

	$a_{n}^{(p)}$
c , a constant	A, a constant
n	$A_1 n + A_0$
n^2	$A_2 n^2 + A_1 n + A_0$
$n^t, t \in \mathbb{Z}^+$	$A_t n^t + A_{t-1} n^{t-1} + \cdots + A_1 n + A_0$
$r^n, r \in \mathbb{R}$	Ar^n
$\sin \theta n$	A sin $\theta n + B \cos \theta n$
$\cos \theta n$	A sin $\theta n + B \cos \theta n$
$n^t r^n$	$r^{n}(A_{t}n^{t}+A_{t-1}n^{t-1}+\cdots+A_{1}n+A_{0})$
r^n sin θn	$Ar^n \sin \theta n + Br^n \cos \theta n$
r^n cos θ n	Ar^n sin $\theta n + Br^n$ cos θn

Table 10.2

Systematic Approach (cont.)

- Consider $C_0a_n + C_1a_{n-1} + C_2a_{n-2} + \cdots + C_ka_{n-k} = f(n)$
	- If f(n) is a sum of several terms, and none of them is a solution of the associated homo. relation, then $a_n^{(p)}$ is made up of the sum
	- If part of $f(n)$, say $f_1(n)$, is a solution of homo. Relation, we find the smallest *s* so that no summand of $n^s f_l(n)$ is solution of the homo. relation. Replace $a_n^{(p)}$ with $n^s(a_n^{(p)})$

Example

- Ex 10.36: *n* people at a party, each two persons shakes hands exactly once. Let a_n count the no. handshakes, we have $a_{n+1} = a_n + n, n \ge 2, a_2 = 1$
	- Intuition, if $(n+1)$ -st person comes, he/she will shake hands with the other n persons
	- By the table, want to try A_1n+A_0 for constants A_1 , A_0
	- But $a_n^{(h)} = c(1^n) = c$, so the A_0 term is a solution of the homo. relation \rightarrow We must multiply A_1n+A_0 by the smallest n^s , so that none of the terms is the solution of homo. relation
	- $-$ s=1 is sufficient, hence $a_n^{(p)} = A_1 n^2 + A_0 n$

Example (cont.)

- Ex 10.36: Combine this with $a_{n+1} = a_n + n$, we have $A_1(n+1)^2 + A_0(n+1) = A_1n^2 + A_0n + n$
	- $A_I = 1/2, A_0 = -1/2$
	- Then, we have $a_n^{(p)} =$ 1 $\frac{1}{2}n^2 + (-\frac{1}{2})$)*n* $a_n = c +$ 1 $\frac{1}{2}(n)(n-1)$
	- Since $a_2=1$ \rightarrow **c**=0

Outline

10.1 The First-Order Linear Recurrence Relation 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients 10.3 The Nonhomogeneous Recurrence Relation 10.4 The Method of Generating Functions

Order 1 Example

- **•** Ex 10.38: Solve the relation $a_n 3a_{n-1} = n$, $n \ge 1$, $a_0 = 1$
	- To bring in generating function, we multiply n=1 with x, $n=2$ with x^2 , and so on. We have

$$
n = 1: a_1 x^1 - 3a_0 x^1 = 1 x^1
$$

$$
n = 2: a_2 x^2 - 3a_1 x^1 = 2x^2
$$

- Then we have $\sum_{n=1}^{\infty} a_n x^n 3 \sum_{n=1}^{\infty} a_{n-1} x^n =$ $a_n x^n - 3 \sum_{n=1}^{\infty} a_{n-1} x^n = \sum_{n=1}^{\infty} a_n$ *nxⁿ*
- Let f(x) be the ordinary generating function of a_0 , a_1 , a_2 ,.., then we have $n=1$ $n=1$ $n=1$ $(f(x) - a_0) - 3x \sum_{n=0}^{\infty}$ $n=1$ $a_{n-1}x^{n-1} = \sum_{n=0}^{\infty}$ $n = 0$ *nxⁿ*

- And then
$$
(f(x) - 1) - 3xf(x) = \sum_{n=0}^{\infty} nx^n
$$

Order 1 Example (cont.)

- **•** Ex 10.38: Solve the relation $a_n 3a_{n-1} = n$, $n \ge 1$, $a_0 = 1$
	- Recall the generating function of 0, 1, 2, 3, … is *x* $\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + \cdots$
	- Therefore $(f(x) - 1) - 3xf(x) = \frac{1}{(1 - 1)^2}$
	- We write $\frac{x}{(1-x)^2(1-3x)} = \frac{A}{1-x} + \frac{(1-x)^2}{(1-x)^2}$ \pm *B* $\frac{1}{(1-x)^2} +$ *C* $1 - 3x$
	- Solving it we get A=-1/4, B=-1/2, and $C=3/4$
	- That is: $f(x) = \frac{7/4}{1-3}$ $1 - 3x$ $+\frac{-1/4}{1-r}$ $1 - x$ $+\frac{-1/2}{(1-r)}$ $(1 - x)^2$
	- Using the formulas learned in the generating functions, we have $a_n = \frac{7}{4}$ 4 $3^n - \frac{1}{2}$ 2 $n - \frac{3}{4}$ 4

Order 2 Example

- **Ex** 10.39: Solve the relation $a_{n+2}-5a_{n+1}+6a_n=2$, $n>=0, a_0=3, a_1=7$
	- Multiply the relation by $x^{n+2} \rightarrow a_{n+2}x^{n+2} 5a_{n+1}x^{n+2} + 6a_nx^{n+2} = 2x^{n+2}$
	- Summation: $\sum_{n=1}^{\infty}$ $n = 0$ $a_{n+2}x^{n+2} - 5\sum_{i=1}^\infty$ $n=0$ $a_{n+1}x^{n+2} + 6 \sum_{n=1}^{\infty}$ $n = 0$ $a_n x^{n+2} = 2 \sum_{n=1}^{\infty}$ $n = 0$ x^{n+2}
	- Match the exponents:

$$
\sum_{n=0}^{\infty} a_{n+2} x^{n+2} - 5x \sum_{n=0}^{\infty} a_{n+1} x^{n+1} + 6x^2 \sum_{n=0}^{\infty} a_n x^n = 2x^2 \sum_{n=0}^{\infty} x^n
$$

- Let $f(x)$ be the generating function, we have

$$
(f(x) - 3 - 7x) - 5x(f(x) - 3) + 6x^2 f(x) = \frac{2x^2}{1 - x}
$$

Order 2 Example (cont.)

- **Ex** 10.39: Solve the relation $a_{n+2}-5a_{n+1}+6a_n=2$, $n>=0, a_0=3, a_1=7$ - Simplify it, we get $f(x) = \frac{3 - 5x}{(1 - 3x)(1 - 3x)}$
	- $(1 3x)(1 x)$
	- Applying partial-fraction decomposition, we have $f(x) = \frac{2}{1-x}$ $1 - 3x$ \pm 1 $\frac{1}{1-x} = 2$ $rac{\infty}{\sqrt{ }}$ $n = 0$ $(3x)^n + \sum_{n=1}^{\infty}$ $n = 0$ *xn*
	- Hence, $a_n = 2(3^n) + 1$

Take-home Exercises

- Exercise 10.1: 2, 3, 7, 9
- Exercise 10.2: 1, 3, 4, 20, 31
- Exercise 10.3: 1, 2, 4, 5, 11
- § Exercise 10.4: 1