Department of Computer Science National Tsing Hua University

CS 2336: Discrete Mathematics Chapter 10

Recurrence Relations

Instructor: Cheng-Hsin Hsu

Outline

- 10.1 The First-Order Linear Recurrence Relation
- 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients
- 10.3 The Nonhomogeneous Recurrence Relation
- 10.4 The Method of Generating Functions

Geometric Progression

- For a sequence, we want to write a_n as a function of the prior terms $a_0, a_1, ..., a_{n-1}$
- Geometric progression: an infinite sequence with a common ratio
 - For example: 5, 15, 45, 135, ..., where $a_{n+1}=3a_n$, and $a_0=5$
- $a_{n+1}=3a_n$ is the recurring relation, 3 is the common ratio, and a_0 helps us to determine the right sequence
 - Many sequences can be generated with a recurring realtion

Terminology

- A recurrence relation is first order linear homogeneous with constant coefficients, if a_{n+1} (current term) only depends on a_n (previous term)
- A known term a_0 or a_1 , is called the boundary condition
 - If a_0 equals to a constant, it is also called initial condition
- Example, $a_{n+1} = 3a_n$, $a_0 = 5$
 - Unique solution: $a_n = 5(3^n)$
 - No longer need to compute a_5 before getting a_6

General Form and Example

The unique solution of recurrence relation $a_{n+1}=da_n$, where $n \ge 0$, d is a constant and $a_0 = A$ is

-
$$a_n = Ad^n, n > = 0$$

- Ex 10.1: Solve $a_n = 7a_{n-1}$, where n > = 1 and $a_2 = 98$
 - $-A_0 = 98/7/7 = 2 \rightarrow a_n = 2*7^n$
- Ex 10.2: A bank pays 6% annual interests, and compounding the interest monthly. If we deposit \$1000, how much will the deposit worth a year later?

-
$$p_{n+1} = p_n + 0.005p_n$$
, $p_0 = 1000$, $p_n = 1000*1.005^n$, $p_{12} = 1062$

Converting Nonlinear to Linear

- Ex 10.4: Find a_{12} if $a_{n+1}^2 = 5a_n^2$, where $a_n > 0$ for n > = 0 and $a_0 = 2$
 - The relation is not linear!
 - What if we let $b_n = a_n^2$?
 - $b_0 = 4$, $b_n = 4 \cdot 5^n$
 - b_{12} =976562500, a_{12} =31250

General First-Order Linear Recurrence

- The general form is $a_{n+1}+ca_n=f(n)$, n>=0, where c is a constant and f(n) is a function on nonnegative integers
- F(n)=0 for all $n \rightarrow$ homogeneous recurrence
 - Nonhomogeneous, otherwise
- Many techniques are useful for solving nonhomogeneous problems, but non of them can solve all such problems

Bubble Sort

Figure 10.3

Bubble Sort (cont.)

Let a_n be the number of comparisons to sort n numbers using bubble sort

-
$$a_n = a_{n-1} + (n-1), n \ge 2, a_1 = 0$$

It is linear first-order, but the term n-1 makes it nonhomogeneous

$$-a_{1}=0$$

$$-a_2=a_1+(2-1)=1$$

$$-a_3=a_2+(3-1)=1+2$$

-

- In general
$$a_n = 1 + 2 + ... + (n-1) = (n^2 - n)/2$$

More Examples

- Ex 10.6: Find the pattern of: 0, 2, 6, 12, 20, 30, 42, ...
 - See no pattern, try to compute the difference: 2, 4, 6, 8, 10, 12, ... $\rightarrow a_n$ - a_{n-1} =2n, n>=1, a_0 =0
 - a_n - a_0 =2+4+6+...+2n=2[n(n+1)/2]= n^2 +n
 - Compared against Ex. 9.6
- Ex 10.7 (variable coefficient): Solve the relation $a_n = n * a_{n-1}$, where n > = 1 and $a_0 = 1$
 - $a_0 = 1$, $a_1 = 1 * a_0 = 1$, $a_2 = 2 * a_1 = 2$, , $a_3 = 3 * a_2 = 6$,....
 - In fact, $a_n = n!$

Outline

- 10.1 The First-Order Linear Recurrence Relation
- 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients
- 10.3 The Nonhomogeneous Recurrence Relation
- 10.4 The Method of Generating Functions

Order K Linear Recurrence

- Let $k \in \mathbb{Z}^+, C_0(\neq 0), C_1, \dots, C_k(\neq 0)$ be real numbers
 - $C_0 a_n + C_1 a_{n-1} + \cdots + C_k a_{n-k} = f(n), \ n \ge k$ is a linear recurrence relation with constant coefficients of order k
- If f(n)=0 for all n>=0, the relation is homogeneous, otherwise, it's nonhomogeneous
- We study homogeneous relation of order two in this section
 - $C_0a_n + C_1a_{n-1} + C_2a_{n-2} = 0, n \ge 2$

Order 2 Linear Recurrence

In particular, we look for a solution in the form $a_n = cr^n, c \neq 0, r \neq 0$

$$C_0a_n + C_1a_{n-1} + C_2a_{n-2} = 0, n \ge 2$$

-
$$C_0cr^n + C_1cr^{n-1} + C_2cr^{n-2} = 0$$

-
$$C_0r^2 + C_1r^1 + C_2 = 0$$
 \leftarrow characteristic equation

- Three cases of the roots $r_1, r_2 \leftarrow$ characteristic roots
 - (a) distinct real numbers
 - (b) complex conjugate pair
 - (c) same real number

Case A Example 1

- Ex 10.9: Solve recurrence relation $a_n + a_{n-1} 6a_{n-2} = 0$, where $n \ge 2$ and $a_0 = -1$, $a_1 = 8$
 - $-cr^{n}+cr^{n-1}-6cr^{n-2}=0$
 - $r^2 + r 6 = 0 \rightarrow r = 2, -3$
- Then $a_n = 2^n$ or $a_n = (-3)^n$ are two indep. solutions!
- In fact, we can write $a_n = c_1 2^n + c_2 (-3)^n$
- $-1 = c_1 + c_2$ and $8 = 2c_1 3c_2 \rightarrow c_1 = 1$ and $c_2 = -2$
- Solution: $a_n = 2^n 2(-3)^n$

Case A Example 2

- Ex 10.10: Solve the recurrence relation $F_{n+2} = F_n$ $_{+1}+F_{n}$, where $F_{0}=0, F_{1}=1$
- Let $F_n = cr^n$, we have $r^2 r 1 = 0$, characteristic roots are $\frac{1 \pm \sqrt{5}}{2}$ \rightarrow let $F_n = c_1 (\frac{1 + \sqrt{5}}{2})^n + c_2 (\frac{1 - \sqrt{5}}{2})^n$ • We have $c_1 = \frac{1}{\sqrt{5}}$, $c_2 = -\frac{1}{\sqrt{5}}$
- Solution: $F_n = \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^n$

Case A Example 3

- Ex 10.14: Legal arithmetic expressions without parentheses \leftarrow 0, 1, 2, ..., 9 and +,*,/
- Let a_n be the no. legal expressions with n symbols
 - a_1 =10, a_2 =100, but for n>3?
 - Case I: if x is an expr. with n-1 symbols, and the last symbol is a digit. $10a_{n-1}$ way to add a symbol to it
 - Case II: if y is an expr. with n-2 symbols, we have 29 ways to add an operator and a digit to it
 - $-a_n=10a_{n-1}+29a_{n-2}$
- **Solution:** $a_n = \frac{5}{3\sqrt{6}}[(5+3\sqrt{6})^n (5-3\sqrt{6})^n]$

Case B Example

• Ex 10.20: Determine $(1 + \sqrt{3}i)^{10}$

$$-r = 2, \ \theta = \pi/3 \ \rightarrow 1 + \sqrt{3}i = 2(\cos(\pi/3) + i\sin(\pi/3))$$

- We know $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
- Hence, $(1+\sqrt{3}i)^{10} = 2^{10}(\cos(4\pi/3) + i\sin(4\pi/3))$

$$=2^{10}\left(\frac{-1}{2}-\frac{\sqrt{3}}{2}i\right)=(-2)^{9}\left(\frac{1}{1}+\sqrt{3}i\right)$$

Figure 10.9

Case B Example (cont.)

- Ex 10.21: Solve $a_n = 2a_{n-1} 2a_{n-2}$, where $a_0 = 1$, $a_1 = 2$
- Let $a_n = cr^n \rightarrow r^2 2r + 2 = 0 \rightarrow \text{roots are } 1 \pm i$
- Let $a_n = c_1(1+i)^n + c_2(1-i)^n$ $-1 + i = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4)), \ 1 - i = \sqrt{2}(\cos(\pi/4) - i\sin(\pi/4))$

$$a_n = (\sqrt{2})^n (x_1 \cos(n\pi/4) + x_2 \sin(n\pi/4)), x_1 = c_1 + c_2, x_2 = (c_1 - c_2)i$$

• Solution: $a_n = (\sqrt{2})^n (\cos(n\pi/4) + \sin(n\pi/4))$

Case C Example

- Ex 10.23: Solve $a_{n+2} = 4a_{n+1} 4a_n$, $a_0 = 0$, $a_1 = 3$
 - Characteristic equation r^2 - $4r+4=0 \rightarrow r=2, 2$
 - 2^n and 2^n are not indep \rightarrow let's try some $g(n)2^n$, where g(n) is not a constant
 - We have $g(n+2)2^{n+2}=4g(n+1)2^{n+1}-4g(n)2^n \rightarrow$ one solution is g(n)=n, although there are many other solutions
 - That is, $n2^n$ is another indep. Solution
 - The general solution is then: $a_n = c_1 2^n + c_2 n 2^n$
 - With $a_0=1$, $a_1=3$, we have $a_n=2^n+n2^{n-1}$
- Can be generalized to multiple repeated roots

Outline

- 10.1 The First-Order Linear Recurrence Relation
- 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients
- 10.3 The Nonhomogeneous Recurrence Relation
- 10.4 The Method of Generating Functions

Nonhomogeneous

We consider the recurrence relations

$$a_0 + C_1 a_{n-1} = f(n), n \ge 1$$
$$a_n + C_1 a_{n-1} + C_2 a_{n-2} = f(n), n \ge 2$$

- C_1 , C_2 are constant, and f(n) is not zero. \leftarrow nonhomogeneous relations.
- There are no standard way to solve all nonhomogeneous relations, we discuss techniques for certain types of problems

First Example

• General: Order 1, with $C_1 = -1 \rightarrow a_n - a_{n-1} = f(n)$

$$a_1 = a_0 + f(1)$$

 $a_2 = a_1 + f(2) = a_0 + f(1) + f(2)$
.....

$$a_n = a_{n-1} + f(n) = a_0 + \sum_{i=1}^n f(i)$$

- We can solve it if we know how to deal with the last term
- Ex 10.25: Solve a_n - a_{n-1} = $3n^2$, a_0 =7 - $a_n = a_0 + \sum_{i=1}^n f(i) = 7 + 3\sum_{i=1}^n i^2 = 7 + \frac{1}{2}(n)(n+1)(2n+1)$
- What is we are not that lucky?

Undetermined Coefficients

- Method of undetermined coefficients: for both firstand second-order nonhomogeneous relations
 - Rely on solving the associated homogeneous relation
- Let $a_n^{(h)}$ be the general solution of associated homogeneous relation, and $a_n^{(p)}$ be the particular solution to the nonhomogeneous relation
 - $a_n = a_n^{(h)} + a_n^{(p)}$ is the final solution
- We already know how to find $a_n^{(h)}$, to determine $a_n^{(p)}$ we use the form of f(n) to guess a form of $a_n^{(p)}$

Undetermined Coefficients

- Ex 10.26: Solve $a_n 3a_{n-1} = 5(7^n)$, where $n \ge 1, a_0 = 2$
 - The solution to the homogeneous part is $a_n^{(h)} = c(3^n)$
 - $f(n) = 5(7^n)$ We look for $a_n^{(p)}$ in the form $A(7^n)$
 - That is, $A(7^n) 3A(7^{n-1}) = 5(7^n)$ $\Rightarrow 7A - 3A = 5(7) \Rightarrow A = 35/2$ $\Rightarrow a_n^{(p)} = (35/4)7^n = (5/4)7^{n+1}$
 - Final solution is $a_n = c(3^n) + (5/4)7^{n+1}$
 - With $a_0 = 2$, we have c=-27/4

Another Example

- Ex 10.27: Solve $a_n 3a_{n-1} = 5(3^n)$, where $n \ge 1, a_0 = 2$
 - Associated homogeneous relation $a_n^{(h)} = c(3^n)$
 - Since $f(n) = 5(3^n)$, we try $a_n^{(p)} = A(3^n)$ \leftarrow but it's not indep. to $a_n^{(h)}$
 - Try $a_n^{(h)} = Bn(3^n)$ instead
 - We have $Bn(3^n) 3B(n-1)(3^{n-1}) = 5(3^n) \Rightarrow Bn B(n-1) = 5 \Rightarrow B = 5$
 - The final solution is $a_n = c(3^n) + 5n(3^n)$
 - With $a_0=2$, we have c=2

Generalized Results

- First order: $a_n + C_1 a_{n-1} = kr^n$
 - If r^n is not a solution of the associated homogeneous relation, then $a_n^{(p)} = Ar^n$, where A is a constant
 - Otherwise, $a_n^{(p)} = Bnr^n$, where B is a constant
- Second order: $a_n + C_1 a_{n-1} + C_2 a_{n-2} = kr^n$
 - $a_n^{(p)} = Ar^n$, if r^n is not a solution of the associated homogeneous relation
 - $a_n^{(p)} = Bnr^n$, if $a_n^{(h)} = c_1r^n + c_2r_1^n$
 - $a_n^{(p)} = Cn^2r^n$, if $a_n^{(h)} = (c_1 + c_2n)r^n$

First Order, Example

- Ex 10.28: Tower of Hanoi with n disks. Let a_n be the minimum number of moves it takes to transfer n disks from peg 1 to peg 3
 - Move n-1 disks from peg 1 to peg 2
 - Move the largest disk from peg 1 to peg 3
 - Move n-1 disks from peg 2 to peg 3
 - Hence, $a_{n+1} = 2a_n + 1$ and $a_0 = 0$
 - We know $a_n^{(h)} = c(2^n)$, and $f(n) = 1^n$ is not a solution of the homogeneous relation \rightarrow we set $a_n^{(p)} = A(1^n) = A$
 - A=2A+1 \rightarrow A=-1 \rightarrow $a_n = c(2^n) 1$, with $a_0 = 0 \Rightarrow c = 1$

Second Order, Example

- Ex 10.34: Solve the recurrence relation a_{n+2} - $4a_n$ + $3a_n$ =-200, n>=0, a_0 =3000, a_1 =3300
 - $a_n^{(h)} = c_1(3^n) + c_2(1^n)$
 - f(n)=-100=-100(1ⁿ) \leftarrow the same as the solution of the associated homogeneous relation
 - Let $a_n^{(p)} = An \rightarrow A(n+2) 4A(n+1) + 3An = -200 \Rightarrow A = 100$
 - Hence, $a_n = c_1(3^n) + c_2 + 100n$
 - With a_0 =3000, a_1 =3300, c_1 =100, c_2 =2900

Systematic Approach

- Consider $C_0 a_n + C_1 a_{n-1} + C_2 a_{n-2} + \dots + C_k a_{n-k} = f(n)$
 - If f(n) is a constant multiple of one of the forms in Table 10.2, and is not a solution of the associated homogeneous relation, then use $a_n^{(p)}$ given in the table

Table 10.2

	$a_n^{(p)}$
c, a constant	A, a constant
n	$A_1n + A_0$
n^2	$A_2n^2 + A_1n + A_0$
n^t , $t \in \mathbf{Z}^+$	$A_{t}n^{t} + A_{t-1}n^{t-1} + \cdots + A_{1}n + A_{0}$
$r^n, r \in \mathbf{R}$	Ar^n
$\sin \theta n$	$A\sin\theta n + B\cos\theta n$
$\cos \theta n$	$A\sin\theta n + B\cos\theta n$
$n^t r^n$	$r^{n}(A_{t}n^{t} + A_{t-1}n^{t-1} + \cdots + A_{1}n + A_{0})$
$r^n \sin \theta n$	$Ar^n \sin \theta n + Br^n \cos \theta n$
$r^n \cos \theta n$	$Ar^n \sin \theta n + Br^n \cos \theta n$

Systematic Approach (cont.)

- Consider $C_0 a_n + C_1 a_{n-1} + C_2 a_{n-2} + \dots + C_k a_{n-k} = f(n)$
 - If f(n) is a sum of several terms, and none of them is a solution of the associated homo. relation, then $a_n^{(p)}$ is made up of the sum
 - If part of f(n), say $f_I(n)$, is a solution of homo. Relation, we find the smallest s so that no summand of $n^s f_I(n)$ is solution of the homo. relation. Replace $a_n^{(p)}$ with $n^s(a_n^{(p)})$

Example

- Ex 10.36: n people at a party, each two persons shakes hands exactly once. Let a_n count the no. handshakes, we have $a_{n+1} = a_n + n$, $n \ge 2$, $a_2 = 1$
 - Intuition, if (n+1)-st person comes, he/she will shake hands with the other n persons
 - By the table, want to try $A_1 n + A_0$ for constants A_1 , A_0
 - But $a_n^{(h)} = c(1^n) = c$, so the A_0 term is a solution of the homo. relation \rightarrow We must multiply $A_1 n + A_0$ by the smallest n^s , so that none of the terms is the solution of homo. relation
 - s=1 is sufficient, hence $a_n^{(p)} = A_1 n^2 + A_0 n$

Example (cont.)

• Ex 10.36: Combine this with $a_{n+1} = a_n + n$, we have

$$A_1(n+1)^2 + A_0(n+1) = A_1n^2 + A_0n + n$$

- $-A_1=1/2, A_0=-1/2$
- Then, we have $a_n^{(p)} = \frac{1}{2}n^2 + (-\frac{1}{2})n$ $a_n = c + \frac{1}{2}(n)(n-1)$
- Since $a_2 = 1 \rightarrow c = 0$

Outline

- 10.1 The First-Order Linear Recurrence Relation
- 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients
- 10.3 The Nonhomogeneous Recurrence Relation
- 10.4 The Method of Generating Functions

Order 1 Example

- Ex 10.38: Solve the relation a_n - $3a_{n-1}=n$, n>=1, $a_0=1$
 - To bring in generating function, we multiply n=1 with x, n=2 with x^2 , and so on. We have

$$n = 1$$
: $a_1 x^1 - 3a_0 x^1 = 1x^1$

$$n = 2: a_2 x^2 - 3a_1 x^1 = 2x^2$$

- Then we have $\sum_{n=1}^{\infty} a_n x^n 3 \sum_{n=1}^{\infty} a_{n-1} x^n = \sum_{n=1}^{\infty} n x^n$ Let f(x) be the ordinary generating function of a_0 , a_1 , a_2 ,...,
- then we have $(f(x) a_0) 3x \sum_{n=0}^{\infty} a_{n-1}x^{n-1} = \sum_{n=0}^{\infty} nx^n$
- And then $(f(x) 1) 3xf(x) = \sum nx^n$

Order 1 Example (cont.)

- Ex 10.38: Solve the relation a_n - $3a_{n-1}$ =n, n>=1, a_0 =1
 - Recall the generating function of 0, 1, 2, 3, ... is $\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + \cdots$
 - Therefore $(f(x) 1) 3xf(x) = \frac{1}{(1 x)^2}$ - We write $\frac{x}{(1 - x)^2(1 - 3x)} = \frac{A}{1 - x} + \frac{B}{(1 - x)^2} + \frac{C}{1 - 3x}$
 - Solving it we get A=-1/4, B=-1/2, and C=3/4
 - That is: $f(x) = \frac{7/4}{1-3x} + \frac{-1/4}{1-x} + \frac{-1/2}{(1-x)^2}$
 - Using the formulas learned in the generating functions, we have $a_n = \frac{7}{4}3^n \frac{1}{2}n \frac{3}{4}$

Order 2 Example

- Ex 10.39: Solve the relation a_{n+2} - $5a_{n+1}$ + $6a_n$ =2, n > 0, $a_0 = 3$, $a_1 = 7$
 - Multiply the relation by $x^{n+2} \rightarrow a_{n+2}x^{n+2} 5a_{n+1}x^{n+2} + 6a_nx^{n+2} = 2x^{n+2}$
 - Summation: $\sum_{n=0}^{\infty} a_{n+2} x^{n+2} 5 \sum_{n=0}^{\infty} a_{n+1} x^{n+2} + 6 \sum_{n=0}^{\infty} a_n x^{n+2} = 2 \sum_{n=0}^{\infty} x^{n+2}$
 - Match the exponents:

$$\sum_{n=0}^{\infty} a_{n+2} x^{n+2} - 5x \sum_{n=0}^{\infty} a_{n+1} x^{n+1} + 6x^2 \sum_{n=0}^{\infty} a_n x^n = 2x^2 \sum_{n=0}^{\infty} x^n$$

- Let f(x) be the generating function, we have

$$(f(x) - 3 - 7x) - 5x(f(x) - 3) + 6x^{2}f(x) = \frac{2x^{2}}{1 - x}$$

Order 2 Example (cont.)

- Ex 10.39: Solve the relation a_{n+2} - $5a_{n+1}$ + $6a_n$ =2, n > 0, $a_0 = 3$, $a_1 = 7$
 - Simplify it, we get $f(x) = \frac{3 5x}{(1 3x)(1 x)}$
 - Applying partial-fraction decomposition, we have

$$f(x) = \frac{2}{1 - 3x} + \frac{1}{1 - x} = 2\sum_{n=0}^{\infty} (3x)^n + \sum_{n=0}^{\infty} x^n$$

- Hence, $a_n = 2(3^n) + 1$

Take-home Exercises

- Exercise 10.1: 2, 3, 7, 9
- Exercise 10.2: 1, 3, 4, 20, 31
- Exercise 10.3: 1, 2, 4, 5, 11
- Exercise 10.4: 1