Name:

Student ID:

Quiz #1 6%

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

This is a closed book test. Any academic dishonesty will automatically lead to zero point.

(1%) In how many ways can the symbols a, b, b, c, d, e, e, e, e, e, e, e be arranged so that no e is adjacent to another e?
Answer: There are ^{5!}/_{2!} = 60 ways.

2) (1%) Consider the following program segment where i, j, and k are integer variables.

for i := 1 to 12 do for j := 5 to 10 do read (i-j) for k := 15 downto 8 do print (i-j)*k

- a) How many time is the **print** statement executed?
- b) How many time is the read statement executed?

Answer:

- a) The line will be executed $(12 1 + 1) \times (10 5 + 1) \times (15 8 + 1) = 576$ times.
- b) The line will be executed $(12 1 + 1) \times (10 5 + 1) = 72$ times.

- 3) (2%) Determine the coefficient of $w^2 x^2 y^2 z^2$ in the expansion of
 - a) $(w x + y z)^8$
 - b) $(w + x + y + z + 1)^2$
 - c) $(2w x + 3y + z 2)^{12}$
 - d) $(v+w-2x+y+5z+3)^{12}$

Answer:

- a) $\binom{8}{2.2.2.2}(1)^2(-1)^2(1)^2(-1)^2 = \frac{8!}{2!^4} \times 1$
- **b**) 0
- c) $\binom{12}{2,2,2,2,4}(2)^2(-1)^2(3)^2(1)^2(-2)^4 = \frac{12!}{2!^4 \cdot 4!} \times (2)^2(3)^2(2)^4$
- d) $\binom{12}{0,2,2,2,2,4}(1)^2(-2)^2(1)^2(5)^2(3)^4 = \frac{12!}{2!^4 \cdot 4!} \times (2)^2(5)^2(3)^4$

4) (2%) Consider the strings made up of n bits – that is, a total of n 0's and 1's. In particular consider those strings with exactly five occurrences of 01. For $n \ge 10$, How many such strings are there?

Answer:

For $n \ge 10$, a string with this structure has x_1 1's followed by x_2 0's followed by x_3 1's ... followed by x_{12} 0's, where $x_1 + x_2 + \ldots + x_{12} = n$, $x_1, x_{12} \ge 0$, $x_2, \ldots, x_{11} > 0$.

The number of solutions to this equation equals to the number of solutions to $y_1 + y_2 + \dots + y_{12} = n - 10$. The number of this equation is $\binom{12+(n-10)-1}{n-10} = \binom{n+1}{11}$