Name:

Student ID:

Quiz #4 6%

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

This is a closed book test. Any academic dishonesty will automatically lead to zero point.

- 1) (1.5%) A sequence of numbers $a_1, a_2, ...$ is defined by $a_1 = 1, a_2 = 2, a_n = a_{n-1} + a_{n-2}, n \ge 3$
 - a) Determine the value of a_5, a_6, a_7
 - b) Prove that for all $n \ge 1, a_n < (\frac{7}{4})^n$

Answer:

- a) $a_5 = 8, a_6 = 13, a_7 = 21$
- b) $a1=1<(\frac{7}{4})^1$ so the result is true for n=1, Likewise $a_2=2<(\frac{7}{4})^2$ and the result holds for n=2. Assume the result true for all $1\leq n\leq k$, where k>2. Now for n=k+1 we have $a_{k+1}=a_k+a_{k-1}<(\frac{7}{4})^k+(\frac{7}{4})^{k-1}=(\frac{7}{4})^{k-1}(\frac{11}{4})=(\frac{7}{4})^{k-1}(\frac{44}{16})<(\frac{7}{4})^{k-1}(\frac{49}{16})=(\frac{7}{4})^{k-1}(\frac{7}{4})^2=(\frac{7}{4})^{k+1}$ Hence, by the Principle of Mathematical Induction it follows that $a_n<(\frac{7}{4})^n$ for all $n\geq 1$.
- 2) (1.5%) Let $L_0, L_1, L_2 \dots$ denote the Lucas numbers, where
 - a) $L_0 = 2, L_1 = 1$
 - b) $L_{n+2} = L_{n+1} + L_n$ for n > 0
 - c) $L_1^2 + L_1^2 + L_3^2 + \ldots + L_n^2 = L_n L_{n+1} 2, \ \forall n \in \mathbb{N}$

If $n \in \mathbb{N}$, prove that $5F_{n+2} = L_{n+4} - L_n$, where F_n denotes the n^{th} Fibonacci number Answer:

We adopt the Alternative Form of Principle of Mathematical Induction to prove $5F_{n+2} = L_{n+4} - L_n$.

For
$$n = 0$$
, $5F_{0+2} = 5F_2 = 5(1) = 5 = 7 - 2 = L_4 - L_0 = L_{0+4} = L_0$
For $n = 1$, $5F_{1+2} = 5F_3 = 5(2) = 10 = 11 - 1 = L_5 - L_1 = L_{1+4} = L_1$

Next, we assume the induction hypothesis – that is, that for some $k \ge 1$, $5F_{n+2} = L_{n+4} - L_n$

for all $n=0,1,2,\ldots,k-1,k$. It then follows that for n=k+1, $5F_{(k+1)+2}=5F_{k+3}=5(F_{k+2}+F_{k+1})=5(F_{k+2}+F_{(k-1)+2})=5F_{k+2}+5F_{(k-1)+2}=(L_{k+4}-L_k)+(L_{(k-1)+4}-L_{(k-1)})=(L_{k+4}-L_k)+(L_{k+3}-L_{k-1})=(L_{k+4}+L_{k+3})-(L_k+L_{k-1})=L_{k+5}-L_{k+1}=L_{(k+1)+4}+L_{k+1}.$ Hence, it then follows that $\forall n\in \mathbb{N}$ $5F_{n+2}=L_{n+4}-L_n$.

- 3) (2%) Convert each of the following binary numbers to base 10 and base 16
 - a) 11001110
 - b) 00110001
 - c) 11110000
 - d) 01010111

Answer:

Base 2	Base 10	Base 16
11001110	206	CE
00110001	49	31
11110000	240	F0
01010111	87	57

4) (1%) Prove that \sqrt{p} is irrational for any prime p. Hint: Try proof by contradiction Answer:

If \sqrt{p} is not irrational for any prime p, we have $\sqrt{p} = \frac{a}{b}$, where $a, b \in \mathbf{Z}^+$ and $\gcd(a, b) = 1$. Then $\sqrt{p} = \frac{a}{b} \Rightarrow p = \frac{a^2}{b^2} \Rightarrow pb^2 = a^2 \Rightarrow p|a^2 \Rightarrow p|a$. We know that $a = pk \; \exists k \in \mathbf{Z}^+$, since p|a. Besides, $pb^2 = a^2 = (pk)^2$, or $b^2 = pk^2$. Hence, $p|b^2 \Rightarrow p|b$. However, if p|a and p|b then $\gcd(a,b) = p > 1$. Here we can see that our conclusion $\gcd(a,b) = p > 1$ contradicts our assumption $\gcd(a,b) = 1$ in the very beginning.