Name:

Student ID:

# Quiz #7 6%

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

This is a closed book test. Any academic dishonesty will automatically lead to zero point. If the total points are more than 6 points, you will get at most 6 points out of it.

- 1) (2%) If  $A = \{w, x, y, z\}$ , determine the number of relations on A that are
  - a) symmetric
  - b) reflexive and symmetric
  - c) antisymmetric and contain (x, y)
  - d) reflexive, symmetric, and antisymmetric

#### Answer:

- a) 2<sup>10</sup>
- b) 2<sup>6</sup>
- c)  $2^4 \cdot 3^5$
- **d**) 1
- 2) (2%) Let  $A = \{1, 2, 3, 4\}, B = \{w, x, y, z\}$ . Define the relation  $\mathscr{R}_1 \subseteq A \times B, \mathscr{R}_2 \subseteq B \times A$ and  $\mathscr{R}_3 \subseteq B \times A$ , where  $\mathscr{R}_1 = \{(1, w), (3, w), (2, x), (1, y)\}, \mathscr{R}_2 = \{(w, 4), (x, 1), (x, 3), (y, 2)\}$ and  $\mathscr{R}_3 = \{(w, 3), (y, 4)\}.$ 
  - a) Determine  $\mathscr{R}_1 \circ (\mathscr{R}_2 \cup \mathscr{R}_3)$
  - b) Draw the digraph of (a)

#### Answer:

a)  $\mathscr{R}_1 \circ (\mathscr{R}_2 \cup \mathscr{R}_3) = \{(1,2), (1,3), (1,4), (2,1), (2,3), (3,3), (3,4)\}$ 



3) (2%) Let A = {1,2,3,6,9,18}, and define R on A by xRy if x | y. Draw the Hasse diagram for the poset (A, R).

## Answer:



- 4) (2%) If  $A = \{1, 2, 3, 4, 5, 6, 7\}$ , define  $\mathscr{R}$  on A by  $(x, y) \in \mathscr{R}$  if x y is a multiple of 3.
  - a) Show that  $\mathscr{R}$  is an equivalence relation on A.
  - b) Determine the equivalence classes and partition of A induced by  $\mathcal{R}$ .

### Answer:

a) For all a ∈ A, a − a = 3 ⋅ 0, so 𝔅 is reflexive. For a, b ∈ A, a − b = 3c, for some c ∈ Z ⇒ b − a = 3(−c), for −c ∈ Z, so a𝔅b ⇒ b𝔅a and 𝔅 is symmetric. If a, b, c ∈ A and a𝔅b, b𝔅c, then a − b = 3m, b − c = 3n, for some m, n ∈ Z ⇒ (a − b) + (b − c) = 3m + 3n ⇒ a − c = 3(m + n), so a𝔅c. Consequently, 𝔅 is

transitive.

b)  $[1] = [4] = [7] = \{1, 4, 7\}; [2] = [5] = \{2, 5\}; [3] = [6] = \{3, 6\}.$  $A = \{1, 4, 7\} \cup \{2, 5\} \cup \{3, 6\}.$  5) (2%) For the finite state machine given in the state table below, determine a minimal machine that is equivalent to it. Please give the state table and the intermediate partitions as the answer (e.g.,  $P_1, P_2$ ...).

|       | ν     |       | ω |   |
|-------|-------|-------|---|---|
|       | 0     | 1     | 0 | 1 |
| $s_1$ | $s_7$ | $s_6$ | 1 | 0 |
| $s_2$ | $s_7$ | $s_7$ | 0 | 0 |
| $s_3$ | $s_7$ | $s_2$ | 1 | 0 |
| $s_4$ | $s_2$ | $s_3$ | 0 | 0 |
| $s_5$ | $s_3$ | $s_7$ | 0 | 0 |
| $s_6$ | $s_4$ | $s_1$ | 0 | 0 |
| $s_7$ | $s_3$ | $s_5$ | 1 | 0 |
| $s_8$ | $s_7$ | $s_3$ | 0 | 0 |

## Answer:

$$P_{1} : \{S_{1}, S_{3}, S_{7}\}, \{S_{2}, S_{4}, S_{5}, S_{6}, S_{8}\}$$

$$P_{2} : \{S_{1}, S_{3}, S_{7}\}, \{S_{2}, S_{5}, S_{8}\}, \{S_{4}, S_{6}\}$$

$$P_{3} : \{S_{1}\}, \{S_{3}, S_{7}\}, \{S_{2}, S_{5}, S_{8}\}, \{S_{4}\}, \{S_{6}\}$$

$$P_{4} = P_{3}$$

|       | ν     |       | ω |   |
|-------|-------|-------|---|---|
|       | 0     | 1     | 0 | 1 |
| $s_1$ | $s_3$ | $s_6$ | 1 | 0 |
| $s_2$ | $s_3$ | $s_3$ | 0 | 0 |
| $s_3$ | $s_3$ | $s_2$ | 1 | 0 |
| $s_4$ | $s_2$ | $s_3$ | 0 | 0 |
| $s_6$ | $s_4$ | $s_1$ | 0 | 0 |