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Statements 

§  Statements (or propositions): declarative sentences 
that are either true or false, but not both 

-  To make assertions ß building blocks of mathematical 
theory 

§  Examples of statements 
-  p: Combinatorics is mandatory for freshmen 
-  q: J. K. Rowling wrote Harry Potter 
-  r: 2 + 3 = 5  

3 



Statements (cont.) 

§  Sentences without truth values are not statements 
-  Exclamation: What a beautiful afternoon! 
-  Command: Get up and do your exercises. 

§  Primitive statement: statement that cannot be 
broken down into simpler forms 

§  Compound statement: negation or combination of 
two or more statements using logical connectives 
(details in the following slides) 
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Negation 

§ One way to transform a given statement p is its 
negation 

-        , which is read as “not p”  
-  No longer a primitive statement 

§  Examples 
-  p : Combinatorics is mandatory for freshmen 

-     : Combinatorics is not mandatory for freshmen 
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¬p

¬p



Logical Connectives 

§  Conjunction:         , which is read “p and q” 

§ Disjunction:          , which is read “p or q” 

§ Disjunction:          , which is read “p exclusive or q” 

§  Implication:           , can be read as “p implies q” 
-  “if p, then q”, “p only if q” 
-  “p is sufficient for q”, “p is a sufficient condition for q” 
-   “q is necessary for p”, “q is a necessary condition for p” 

§  Biconditional:          , which is read “p if and only if 
q” or “p is necessary and sufficient for q”  
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p _ q

p Y q

p ^ q

p $ q

p ! q



Truth Tables 

§  0 à False, 1 à True 

§  Implication: If “2+3 = 6”, then “2+4 =7” 
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Example 2.1 

§  Primitive statement 
-  s: Phyllis goes out for a walk 
-  t: The moon is out 
-  u: It is snowing 

§ Map compound statements to English 
-                         : If the moon is out and it’s not snowing, 

then Phyllis goes out for a walk 
-                         : If the moon is out, then if it’s not 

snowing Phyllis goes out for a walk 
-                         : It is not the case that Phyllis goes out for 

a walk if and only if it is snowing or the moon is out 
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(t ^ ¬u) ! s

t ! (¬u ! s)

¬(s $ (u _ t))



Example 2.1 (cont.) 

§  Primitive statement 
-  s: Phyllis goes out for a walk 
-  t: The moon is out 
-  u: It is snowing 

§ Map English to compound statements 
-  Phyllis will go out walking iff  the moon is out:  
-  If it is snowing and the moon is not out, then Phyllis will 

go out for a walk: 
-  It is snowing but Phyllis will still go out for a walk: 
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s $ t

u ^ s
(u ^ ¬t) ! s



Example 2.5 

§ Develop the following truth table 

§ Why should we avoid                ?  
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p _ q ^ r

 
 
 

 
 
 

 
 
 
 

 
 
 
 



Example 2.6 

§ Observations 
-                       : is always true 
-                       : is always false 
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p ! (p _ q)

p ! (¬p ^ q)



Definition 2.1 
§  Tautology: denoted as 

-  a compound statement that is true for all truth value 
assignments 

§ Contradiction: denoted as  
-  a compound statement is false for all truth value 

assignments 
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T0

F0



Outline 

2.1 Basic Connectives and Truth Tables 

2.2 Logical Equivalence: The Laws of Logic 

2.3 Logic Implication: Rules of Inference 

2.4 The Use of Quantifiers 

2.5 Quantifiers, Definitions, and Proofs of 
Theorems 

 

13 



Equivalence 

§ How can we determine two statements are 
equivalent? 

-  Algebra of logics: we use truth table to check whether 
two statements are the same 

§  Example 2.7 
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Definition 2.2 

§  Two statements s1 and s2 are logically equivalent, 
and written as                     , when the statement s1 
is true (false) if and only if the statement s2 is true 
(false) 

§  Example 2.7:  
-  Based on truth values for all possible choices 
-  One way to get rid of       connectives 
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s1 () s2

¬p _ q () (p ! q)

!



Some Examples 

§    
§                                                             :  

-  One way to get rid of       connectives 
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$
(p $ q) () (¬p _ q) ^ (¬q _ p)

(p $ q) () (p ! q) ^ (q ! p)



De Morgan’s Laws 

§  Example 2.8 
-     
-     
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¬(p ^ q) () ¬p _ ¬q
¬(p _ q) () ¬p ^ ¬q



Distributive Law 
§  Example 2.9 

-     
-     
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p ^ (q _ r) () (p ^ q) _ (p ^ r)

p _ (q ^ r) () (p _ q) ^ (p _ r)



The Laws of Logic 
§  Law of double negation 

§ DeMorgan’s laws 

§  Commutative laws 

§ Associate laws 

§ Distributive laws 
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¬¬p () p

¬(p _ q) () ¬p ^ ¬q

¬(p ^ q) () ¬p _ ¬q

p _ q () q _ p

p ^ q () q ^ p

p _ (q _ r) () (p _ q) _ r

p ^ (q ^ r) () (p ^ q) ^ r

p _ (q ^ r) () (p _ q) ^ (p _ r)

p ^ (q _ r) () (p ^ q) _ (p ^ r)



The Laws of Logic 
§  Idempotent laws 

§  Identity laws 

§  Inverse laws 

§  Domination laws 

§  Absorption laws 
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p _ p () p

p ^ p () p

p _ F0 () p

p ^ T0 () p

p _ ¬p () T0

p ^ ¬p () F0

p _ T0 () T0

p ^ F0 () F0

p _ (p ^ q) () p

p ^ (p _ q) () p



Definition 2.3 
§  Let s be a statement with only connectives    and     , 

the dual of s, denoted sd, is the statement derived 
from s by replacing      and      with        and       , 
respectively, and       and      with      and       , 
respectively 

§  Example: 
-     
-      
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^ ^_ _
T0 T0F0 F0

s : (p ^ ¬q) ^ (r ^ T0)

^ _

sd : pp _ qq _ pr _ F0q



Principe of Duality 
§  Theorem 2.1: Let s and t be statements containing 

no logical connectives other than   and   . If               
then 

§  Then, each law can be proved by showing only one 
of the laws in each pair 
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_ ^ s () t

sd () td



Substitution Rules 
§  Supposing a compound statement P is a tautology, 

and p is a primitive statement. Replacing all 
occurrences of p in P by the same statement q 
results in another tautology 

§  Let P be a compound statement, which consists of a 
statement p. Assuming statement                 . We 
generate P’ by replacing some p in P with q. We 
have                   
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q () p

P () P 0



Example 2.10 
Show 

Proof: 
By DeMorgan’s Laws, the following statement is a tautology 
 
Since p is a primitive statement, we may replace it with            , which 
leads to another tautology 
 
We then replace q with              , which gives us another tautology  
 
Consider the LHS and RHS as two statements, yield the logical 
equivalence.  
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¬[(r ^ s) _ (t ! u)] () [¬(r ^ s) ^ ¬(t ! u)]

P2 : ¬[(r ^ s) _ (t ! u)] $ [¬(r ^ s) ^ ¬(t ! u)]

P0 : ¬[p _ q] $ [¬p ^ ¬q]

P1 : ¬[(r ^ s) _ q] $ [¬(r ^ s) ^ ¬q]

r ^ s

t ! u



Example 2.16 
Simplify the compound statement  

sol:                                            Reasons 
                                                          DeMorgan 

                                                          Double negation 

                                                          Distributive law 

                                                          Inverse law 

                                                          Identify law 

Thus, we have 
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(p _ q) ^ ¬(¬p ^ q)

() (p _ q) ^ (¬¬p _ ¬q)
() (p _ q) ^ (p _ ¬q)
() p _ (q ^ ¬q)
() p _ F0

() p

(p _ q) ^ ¬(¬p ^ q) () p



Example 2.17 
Simplify the compound statement  

sol:                                            Reasons 
                                                          DeMorgan 

                                                          Double negation 

                                                          Associative law 

                                                          Commutative law 

                                                          Associative law 

                                                          Absorption law  
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¬[¬[(p _ q) ^ r] _ ¬q]

¬¬[(p _ q) ^ r] ^ ¬¬q

[(p _ q) ^ r] ^ q

(p _ q) ^ (r ^ q)

(p _ q) ^ (q ^ r)

[(p _ q) ^ q] ^ r

q ^ r

()
()

()
()

()
()
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Argument 
§  Consider a general implication 

where p1, p2, …, pn are premises and statement q is 
the conclusion of this argument 

§  This argument is valid if whenever all premises are 
true, then the conclusion is also true 

-  If any of the premises is false, then the implication is 
automatically true 

-  A more systematic way to show an argument is valid is 
to show it is tautology! 
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(p1 ^ p2 ^ · · · ^ pn) ! q,



Example 2.19 
§  Consider three primitive statements defined as 

-  p: Roger studies 
-  q: Roger plays basketball 
-  r: Roger passes discrete mathematics 

§ Define three premises as 
-  p1: If roger studies, then he will pass the course 
-  p2: If Roger doesn’t play basketball, then he will study 
-  p3: Roger failed the course 

§ Determine whether the following argument is valid 
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(p1 ^ p2 ^ p3) ! q



Example 2.19 (cont.) 
§  Rewrite the premises as 

-  p1: 
-  p2:  
-  p3:  

§ What we really want to show is 

§ We check the truth table, and found the above 
statement is a tautology, hence it is a valid 
argument 
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p ! r

¬q ! p

¬r

[(p ! r) ^ (¬q ! p) ^ ¬r] ! q



Example 2.19 (cont.) 
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Definition 2.4 
§  For any two statements p and q, if           is a 

tautology, then p logically implies q and we write 

-               is called logic implication, and is a tautology 
-  q is true whenever p is true 

§  If               , then               and  

§  If               and               , then  

§            denotes p does not logically implies q 
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p ! q

p =) q

p ! q

p =) q q =) pp () q

p =) q q =) p p () q

p ; q



How to Establish Validity? 

33 

§  So far we only know how to do this using truth 
tables à so many rows to check for tautology 

§ A simple optimization: let’s focus on the rows with 
1 on the LHS. 



 Efficiently Validate Arguments 

34 

§  Construct a list of techniques, called rules of 
inference, to validate arguments without truth tables 

-  Specifically check what if the premises have value 1, 
without building truth tables 

-  Step-by step validations of 

§ We derive a few interference rules in the following 

(p1 ^ p2 ^ · · · ^ pn) ! q



Rule of Detachment 
§  Example 2.22:                          , which can be 

validated using a truth table 

§  Tabular form  
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[p ^ (p ! q)] ! q

p
p ! q

) q

premises 
conclusion therefore 



Rule of Detachment (cont.) 
§  Example 1 

-  p1) Lydia wins a ten-million-dollar lottery 
-  p2) If Lydia wins a ten-million-dollar lottery, 

then Kay will quit his job 
-  c) Therefore, Kay quit his job 

§  Example 2 
-  p1) If Allison vacations in Paris, then she will 

have to win a scholarship 
-  Allison is vacationing in Paris 
-  Therefore Allison won a scholarship 
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p
p ! q

) q

p ! q
p

) q



Law of the Syllogism 
§  Example 2.23: 

§  Tabular form: 

§  Example: 
-  p1) If 35244 is divisible by 396, then 35244 is divisible 

by 66 
-  p2) If 35244 is divisible by 66, then 35244 is divisible by 

3 
-  c) Therefore, if 35244 is divisible by 396, then 35244 is 

divisible by 3 
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[(p ! q) ^ (q ! r)] ! (p ! r)

p ! q
q ! r

) p ! r



Common Inference Rules 
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Common Inference Rules (cont.) 



Example 2.31 
§  If the band could not play rock music or the 

refreshments were not delivered on time, then the party 
would have been canceled, and Alicia would have been 
angry. If the party were canceled, then refunds would 
have had to be made. No refunds were made 

§  First, we define the primitives 
-  p: The band could play rock music 
-  q: The refreshments were delivered on time 
-  r: The party was canceled 
-  s: Alicia was angry 
-  t: Refunds had to be made 
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Example 2.31 (cont.) 
§  The argument becomes 

§  Derivations: 
-  1)                                          Premise 
-  2)                                          Premise 
-  3)                                          1) and 2) and Modus Tollens 
-  4)                                          3) and Disjunctive Amplification 
-  5)                                          4) DeMorgan’s Laws 
-  6)                                          Premise 
-  7)                                          6) and 5) and Modus Tollens 
-  8)                                          7) DeMorgan, Double Negation 
-  9)                                          8) and Conjunctive Simplification 
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(¬p _ ¬q) ! (r ^ s)
r ! t
¬t

) p

r ! t

¬t
¬r
¬r _ ¬s
¬(r ^ s)

(¬p _ ¬q) ! (r ^ s)

¬(¬p _ ¬q)
p ^ q

) p



Example 2.32 
§  Consider the argument 

§  Let’s prove this argument by contradiction: assuming  
-  1)                                             Premise 
-  2)                                             (1) 
-  3)                                             (2) and Conjunctive Simpli. 
-  4)                                             Premise 
-  5)                                             (3), (4), and Law of Syllogism 
-  6)                                             Assumed Premise 
-  7)                                             (5), (6), and Detachment 
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¬p $ q
q ! r
¬r

) p

¬p $ q

(¬p ! q) ^ (q ! ¬p)
¬p ! q

q ! r

¬p ! r

¬p
r

¬p



Example 2.32 (cont.) 
-  8)                                  Premise 
-  9)                                  (7), (8), and Conjunction 
-  10)                                (6), (9), and Proof by Contradiction 
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¬r
r ^ ¬r
) p



Example 2.33 
§  Logical equivalence: 

§  A concrete example  
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[p ! (q ! r)] () [(p ^ q) ! r]

p1
p2
· · ·
pn

) q ! r

p1
p2
· · ·
pn
q

) r

u ! r
(r ^ s) ! (p _ t)
q ! (u ^ s)
¬t

) q ! p

u ! r
(r ^ s) ! (p _ t)
q ! (u ^ s)
¬t
q

) p



Invalid Argument 
§  The following argument is invalid if it’s possible for all 

p1, p2, …, pn to be true, but the q is false 

 

§  Example 2.34: Prove the following argument is invalid 

   Proof: By counter example, let  

             <p, q, r, s, t> = <1, 0, 1, 0, 1>  

             the four premises are 1, but the 

             conclusion is 0      
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p1
p2
· · ·
pn

) q

p
p _ q
q ! (r ! s)
t ! r

) ¬s ! ¬t
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Definition 2.5 
§ A statement is an open statement if 

-  it contains one or more variables  
-  it is not a statement, but 
-  it becomes a statement when the variables in it are 

replaced by certain allowable choices 

§  Example: p(x): The number x+3 is an even number 

§ Allowable choices is called universe 
-  For example: all integers 
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Open Statements 
§ Open statements with multiple variables 

-  q(x,y): The numbers y+2, x-y, and x+2y are even integers 
-  by default, variables share the same universe 

§  Some x, y values lead to true statements while 
others lead to false statements, e.g.,  

-  p(5): The number 8 (5+3) is an even number (true 
statement) 

-          : The number 10 is an even integer (false statement) 
-  q(4, 2): The numbers 4, 2, and 8 are even integers (true 

statement) 
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¬p(7)



Quantifier 
§  Existential quantifier   

-  For some x, p(x) is true 
-  For at least one x, p(x) 
-  There exists an x, p(x) 

§ Another existential quantifier                    or 

§ Universal quantifier  
-  For each x, p(x) is true 
-  For any x, p(x) is true 
-  For all x, p(x) is true 

§ Another universal quantifier                    or  
49 

9x p(x)

9x9y q(x, y) 9x, y q(x, y)

8x p(x)

8x8y q(x, y) 8x, y q(x, y)



Quantified Statements 
§ Open statement r(x): 2x is an even integer 

§ Quantified statement                    , which is a true 
statement 

-                        is also true 

§ We call the variables in open statements as free 
variables, and the “fixed” variables in quantified 
statements as bound variables (bound by       ) 

§  Can we say                               ? 

§ How about                                ? 
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8x 2 N r(x)

9x 2 N r(x)

9, 8

8x p(x) ) 9x p(x)

9x p(x) ) 8x p(x)



Summary of Quantifier 
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Definition 2.6 
§  Let p(x), q(x) be open statements with the same 

universe 

§  Logical equivalence:                               , when the 
biconditional                   is true for all a in the 
universe  

§  Logical implication:                          , when the 
implication                   is true for each a in the 
universe  

§  The definition can be readily extended to open 
statements with multiple variables 
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8x [p(x) () q(x)]

p(a) $ q(a)

8x [p(x) ) q(x)]
p(a) ! q(a)



Definition 2.7 
§  For each quantified statement                          

-  Its contrapositive is: 
-  Its converse is: 
-  Its inverse is:   

§  Example 2.40: 
-  A quantified statement is logically equivalent to its 

contrapositive 
-  The converse and inverse are logically equivalent 
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8x [p(x) ! q(x)]

8x [¬p(x) ! ¬q(x)]

8x [¬q(x) ! ¬p(x)]
8x [q(x) ! p(x)]



Logical Equivalences/Implication 
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Negating Statements 
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Example 2.44 
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§ Over the universe of integers, consider two open 
statements p(x): x is odd, and q(x): x2-1 is even 

§                           is true 

§  Its negation is  

§  In English: There exists an odd integer x, and x2-1 is 
odd ß a false statement 

8x [p(x) ! q(x)]

¬[8x [p(x) ! q(x)]] () 9x [¬(p(x) ! q(x))]

() 9x [¬(¬p(x) _ q(x))] () 9x [p(x) ^ ¬q(x)]



Example 2.48 

57 

§ When a statement consists of existential and 
universal quantifiers, we read them from left to 
right 

§  Let p(x,y) be the open statement: x + y = 17 
-  The following statement reads: There exists an integer y 

such that for all integers x, x + y = 17 

9y8x p(x, y)
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Theorem, Lemma, Corollary 

59 

§  Theorem: a true statement of mathematical interests 
-  Major results that lead to many consequences 

§  Lemma: a proven statement used to prove theorems 

§  Corollary: a direct result from theorems 
-  Usually given with simple (or even without) proof 



Example 2.52 
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§  Consider 13 integers 2, 4, 6, ……, 24, 26 

§  Theorem: for any                                , n can be 
written as the sum of up to three perfect squares 

§  Proof: Use method of exhaustion 
-   2=1+1, 4=4, 6=4+1+1, 8=4+4 
-  10=9+1, 12=4+4+4, 14=9+4+1, 16=16, 18=16+1+1 
-  20=16+4, 22=9+9+4, 24=16+4+4, 26=25+1 

n 2 {2, 4, 6, . . . , 26}



Rule of Universal Specification 

61 

§  If an open statement is true for all replacements in a 
given universe, then the open statement is true for 
each specific individual member in that universe  

§      can be interpreted as: (i) for all, and (ii) for each 8



Rule of Universal Generalization 

62 

§  If an open statement p(x) is proved to be true when 
x is replaced by any arbitrarily chosen element c 
from the universe, then the universally quantified 
statement             if true 

§      can be interpreted as: (i) for all, (ii) for each, and 
(iii) for any 

§  These two rules extend beyond one variable 

8

8x p(x)



Example 2.54 
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§  Let p(x), q(x), and r(x) be open statements over the 
same universe, prove the following argument is 
valid 

-  1)                                 Premise 
-  2)                                 Step (1) and Rule of Universal Specification 
-  3)                                 Premise 
-  4)                                 Step (3) and Rule of Universal Specification 
-  5)                                 Steps (2) and (4) and the Law of Syllogism 
-  6)                                 Step (5) and Rule of Universal Generalization 

§  c is a specific but arbitrarily chosen element  

8x [p(x) ! q(x)]
8x [q(x) ! r(x)]

) 8x [p(x) ! r(x)]

8x[p(x) ! q(x)]

8x[q(x) ! r(x)]

) 8x[p(x) ! r(x)]

p(c) ! q(c)

q(c) ! r(c)

p(c) ! r(c)



Example 2.55 (An App. of 2.54) 

64 

§  Let  
-  p(x): 3x-7=20 
-  q(x): 3x= 27 
-  r(x): x=9  

§  The derivation follows the argument in 2.54 
-  If 3x-7=20, then 3x=27 
-  If 3x=27, then x=9 
-  Therefore, if 3x-7=20, then x=9 

8x [p(x) ! q(x)]
8x [q(x) ! r(x)]

) 8x [p(x) ! r(x)]



Paragraph-Style Proofs 

65 

§  The proofs we have done so far list all the details/
reasons 

-  Including the straightforward and trivial ones 

§  In most occasions, we won’t list all the reasons, 
instead, we describe the key ideas of the proof 

§ Definition 2.8: We call an integer n even if there 
exists an r so that n=2r. If n is not even, then we 
call it odd. For an odd n, there exists an s so that 
n=2s+1. 



Paragraph-Style Proofs (cont.) 

66 

§  Theorem 2.2: For all integers k and l, if k and l are 
both odd, then k+l is even 

§  Proof:  
-  Per definition, we write k=2a+1 and l=2b+1 for some 

integers a and b 
-  Following the commutative and associative laws and 

distributive law, we write k+l=(2a+1)+(2b+1)=2(a+b
+1) 

-  Given that a and b are integers, let c=a+b+1 is also an 
integer. Following the definition, we have k+l=2c is 
even 



Example 2.57 
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§  Consider the statement  
-  If n is an integer, then 

§  Let’s check a few possible n values 
-               
-    

§  But can we say the statement is true?  

§ NO, because it’s easy to find a counter example, 
e.g.,               ß This is a proof of the above 
statement is false 

§  The true statement is:  

8n n2 = n

12 = 1

02 = 0

22 6= 2

9n n2 = n



Another Theorem 

68 

§  Theorem 2.3: For two odd integers k and l, their 
product kl is also odd 

§  Proof: 
-  Per definition, we write k=2a+1 and l=2b+1, for some 

integers a and b 
-  Use algebra, we have kl=4ab+2a+2b+1=2(2ab+a+b)+1 
-  Per the definition of odd integers, we know kl is also odd 

because 2ab+a+b is an integer 



Three Proofs of a Theorem 

69 

§  Theorem 2.4: If m is an even integer, then m+7 is odd 
-  Direct proof 
-  By contradiction: Assume that m+7 is even.  

•  m+7=2c  => m = 2c-7 => m = 2(c-4)+1 
•  m is odd? 
•  Assume            , derive            . 

-  By contraposition 
•  We show if m+7 is even, then m is odd 
•  Then because                              and                                    are logically 

equivalent, the theorem follows 
•  Assume                      , derive      . 

§  Try direct proof first, then fall back to indirect methods 

8x [p(x) ! q(x)] 8x [¬q(x) ! ¬p(x)]

¬q(x) ¬p(x)

p(x) ^ ¬q(x) F0



When to Use Indirect Proof? 
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§  Theorem 2.5: For all positive real numbers x and y, 
if the product xy exceeds 25, then x>5 or y>5 

-  Proved by contraposition 

§  Proof: 
-  Consider                   , we write                           
-  This means xy never exceeds 25 
-  Since an implication is logically equivalent to its 

contrapositive, the above implication yields the proof 

0 < x, y  5 0 = 0 · 0 < xy  5 · 5 = 25



Take-home Exercises 
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§  Exercise 2.1: 4, 6, 13, 17 

§  Exercise 2.2: 6, 14, 15, 19 

§  Exercise 2.3: 3, 8, 10, 12 

§  Exercise 2.4: 3, 6, 8, 19 

§  Exercise 2.5: 7, 19, 21, 24 


