Department of Computer Science National Tsing Hua University

CS 2336: Discrete Mathematics

Chapter 3

Set Theory

Instructor: Cheng-Hsin Hsu

Outline

- 3.1 Sets and Subsets
- 3.2 Set Operations and the Laws of Set Theory
- 3.3 Counting and Venn Diagrams
- 3.4 A First Word on Probability

Set and Element

- Set: A well-defined collection of objects. We use upper-case letters to denote sets, such as *A*, *B*,
- Element (Member): The objects contained in sets. We use lower-case letter to denote elements, such as *a*, *b*, ...

• We write $a \in A$ if a is an element of A, and $a \notin A$ if a is not an element of A

Example 3.1

- One way to represent a set is to use set braces
- Let A be a set of the five smallest positive integer
 - We write $A = \{1, 2, 3, 4, 5\}$
 - 1 is in A: $1 \in A$
 - 8 is not in A: $8 \notin A$
- Another way to represent A
 - $-A = \{x | 1 \le x \le 5, x \in \mathbb{Z}\}$
 - It reads: the set of all x such that ...
 - When the universe is clear (to be integers), we may write $A = \{x | 1 \le x \le 5\}$

Cardinality

Sets can be finite or infinite set

$$- \{x | x > 0, x \in \mathbb{Z}\}$$

$$-\{x|1>x>0, x\in \mathbb{R}\}$$

• For a finite set A, we use |A| to denote the number of elements in it. It is called cardinality or size

Definition 3.1

- For two sets C and D from the same universe, C is a subset of D if and only if every element of C is an element of D
 - We write $C \subset D$ or $D \supset C$

- In addition, if D contains at least one element that is not in C, we call C is a proper subset of D
 - We write $C \subset D$ or $D \supset C$

Some Properties

- $C \subseteq D \text{ iff } \forall x[x \in C \Rightarrow x \in D]$
- For all C and D, $C \subset D \Rightarrow C \subseteq D$ and $D \supset C \Rightarrow D \supseteq C$
- For all C and $D, C \subseteq D \Rightarrow |C| \leq |D|$ and $C \subset D \Rightarrow |C| < |D|$

Definition 3.2

- For any sets A and B from the same universe, A and B are equal iff $A \subseteq B$ and $A \subseteq B$, we write A = B
 - Example: $\{1,2,3\} = \{3,2,1\} = \{2,2,1,3\} = \{1,2,3,1,1\}$

Theorem 3.1

• Let A, B, and C be from the same universe

- If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$
- If $A \subset B$ and $B \subset C$, then $A \subset C$
- If $A \subseteq B$ and $B \subset C$, then $A \subset C$
- If $A \subset B$ and $B \subseteq C$, then $A \subset C$

Definition 3.3

- The null set, or empty set, is the (unique) set containing no elements.
- We denote it as {} or ∅

- $|\emptyset| = 0$
- $\blacksquare \emptyset \neq \{\emptyset\}$

Theorem 3.2

- For any universe \mathbb{U} , for $A \subseteq \mathbb{U}$, we have $\emptyset \subseteq A$
- Proof: Assume $\emptyset \not\subseteq A$, then there is an element x with $x \in \emptyset$ and $x \notin A$. However, $x \in \emptyset$ is impossible. Hence the assumption is rejected.

• Moreover, if $A \neq \emptyset$ then $\emptyset \subset A$

Example 3.7

- How many subsets does the set $C=\{1,2,3,4,5\}$ have?
- Approach #1: For each element, it can appear or not in a subset. Hence, C has $2^5 = 32$ subsets
- Approach #2: We may have 0, 1, 2, ..., 5 elements in a subset. $\binom{5}{0} + \binom{5}{1} + \binom{5}{2} + \binom{5}{3} + \binom{5}{4} + \binom{5}{5} = 32$
- Definition 3.4: The power set of A, P(A), is the collection of all subsets of A

Definition 3.5 & 3.6

- For A, B from the same universe, we define
 - Union: $A \cup B = \{x | x \in A \lor x \in B\}$
 - Intersection: $A \cap B = \{x | x \in A \land x \in B\}$
 - Symmetric Difference: $A \triangle B = \{x | x \in A \cup B \land x \notin A \cap B\}$

Let S, T from the same universe. S and T are disjoint or mutually disjoint iff $S \cap T = \emptyset$

Definition 3.7 & 3.8

• For a set A from universe U, the complement of A, denoted by U-A or \bar{A} , which is given by $\{x|x\in U \land x\notin A\}$

- For set A and B from U, the (relative) complement of A in B, written as B-A, is given by $\{x|x \in B \land x \notin A\}$
- Let *U* be real numbers, A = [1,2] and B=[1,3). What are: (i) $A \cup B$, (ii) $A \cap B$, (iii) \bar{A} , and (iv) B A

The Laws of Set Theory

For any sets A, B, and C taken from a universe $\mathcal U$

1)
$$\overline{\overline{A}} = A$$

2)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

 $\overline{A \cap B} = \overline{A} \cup \overline{B}$

3)
$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

4)
$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$

5)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

$$A \cap A = A$$
$$A \cap A = A$$

7)
$$A \cup \emptyset = A$$

 $A \cap \mathcal{U} = A$

8)
$$A \cup \overline{A} = \mathcal{U}$$

 $A \cap \overline{A} = \emptyset$

9)
$$A \cup \mathcal{U} = \mathcal{U}$$

 $A \cap \emptyset = \emptyset$

10)
$$A \cup (A \cap B) = A$$

 $A \cap (A \cup B) = A$

Law of Double Complement

DeMorgan's Laws

Commutative Laws

Associative Laws

Distributive Laws

Idempotent Laws

Identity Laws

Inverse Laws

Domination Laws

Absorption Laws

Definition 3.9 and Theorem 3.5

Let s be an equality statement of two set expression with only union and interactions operands. The dual of s, written as s^d can be derived from s by replacing: (i) each \emptyset and U by U and \emptyset ; (ii) each \cup and \cap by \cap and \cup

• The principle of duality: let s be a theorem with the quality of two set expressions, then s^d is also a theorem

Definition 3.10

- Let I be a nonempty set and U be a universe. For each i in I, let $A_i \subseteq U$. Then I is called an index set, and each $i \in I$ is an index. Define
 - $\bigcup_{i \in I} A_i = \{x | x \in A_i \text{ for at least an } i \in I\}$
 - $\cap_{i \in I} A_i = \{x | x \in A_i \text{ for all } i \in I\}$

Example: Let $U = \mathbb{R}$ and $I = \mathbb{R}^+$, $A_r = [-r, r]$, what are: (i) $\bigcup_{r \in I} A_r$ and (ii) $\bigcap_{r \in I} A_r$

Venn Diagrams

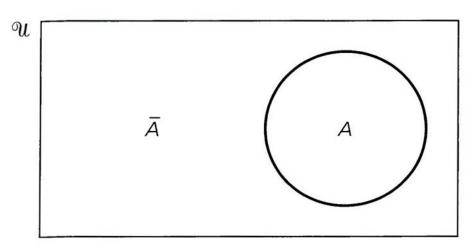


Figure 3.9

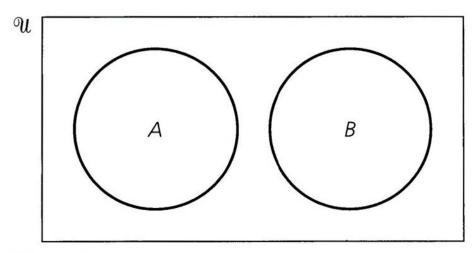


Figure 3.10

Counting

- For two finite sets: $|A \cup B| = |A| + |B| |A \cap B|$
- If A and B are disjoint: $|A \cup B| = |A| + |B|$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

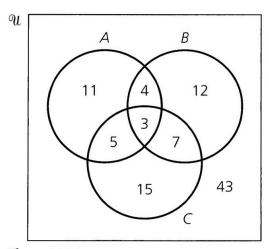


Figure 3.13

A First Word on Probability

- Example Experiments: toss a fair coin, roll a fair die, or randomly select 2 students from a class of 20
- Outcome: The item that got picked
- Sample Spaces (\mathscr{S}): the sets of all possible outcomes: {H, T}, {1, 2, 3, 4, 5, 6}, and {(i, j)| 1 <= i, j <=20}

Probability

Assume equal likelihood, let \mathscr{S} be the sample space for an experiment \mathscr{E} . Each subset A of \mathscr{S} is called an event. Each element of \mathscr{S} determines an outcome. Let $|\mathscr{S}| = n, A \subseteq \mathscr{S}$, $a \in \mathscr{S}$

- Pr({a}) = The probability that {a} occurs =
$$\frac{|\{a\}|}{|\mathcal{S}|} = \frac{1}{n}$$

- Pr(A) = The probability that A occurs =
$$\frac{|A|}{|\mathcal{S}|} = \frac{|A|}{n}$$

Cartesian Product

- For sets A, B, their Cartesian product, or cross product, is written as $A \times B = \{(a, b) | a \in A, b \in B\}$
- Consider an experiment: A single die is rolled and a coin is flipped. Both outcomes are noted.
 - Independent assumption

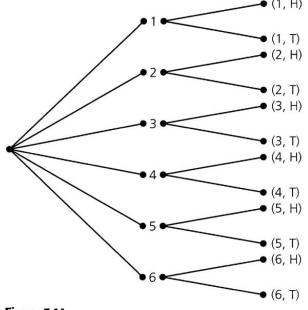


Figure 3.14

Take-home Exercises

- Exercise 3.1: 2, 5, 10, 15, 29
- **Exercise 3.2: 2, 4, 7, 17, 19**
- Exercise 3.3: 4, 5, 6, 10
- Exercise 3.4: 4, 8, 9, 11, 15