Department of Computer Science National Tsing Hua University

CS 2336: Discrete Mathematics Chapter 7

Relations: The Second Time Around

Instructor: Cheng-Hsin Hsu

Outline

- 7.1 Rations Revisited: Properties of Relations
- 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs
- 7.3 Partial Orders: Hasse Diagrams
- 7.4 Equivalence Rations and Partitions
- 7.5 Finite State Machines: The Minimization Process

Recap

- For sets A, B, any subset of A × B is called a
 (binary) relation from A to B. Any subset of A × A is called a (binary) relation on A
 - Ex: Let Σ be an alphabet, with language $A \subseteq \Sigma^*$. For x, y in A, we define $x \mathscr{R} y$ if x is a prefix of y.
 - Ex: Consider a state machine $M = (S, \mathscr{I}, \mathscr{O}, \nu, \omega)$
 - First level of reachability: $s_1 \mathscr{R} s_2$ if $\nu(s_1, x) = s_2$
 - Second level: $s_1 \mathscr{R} s_2$ if $\nu(s_1, x_1 x_2) = s_2, x_1 x_2 \in \mathscr{I}^2$
 - Ex: Define a relation on integers, $x \mathscr{R} y$ if $a \le b$
 - Ex: Define a relation on integer with modulo *n*

Reflexive

A relation R on a set A is called reflexive if for all
 x ∈ A, (x, x) ∈ R

- Ex 7.4: Consider $A = \{1, 2, 3, 4\}$, a relation $\mathscr{R} \subseteq A \times A$ is reflexive iff $\mathscr{R} \supseteq \{(1, 1), (2, 2), (3, 3), (4, 4)\}$
 - Are the following relations reflexive?

$$\mathscr{R}_1 = \{(1,1), (2,2), (2,3)\}$$
$$\mathscr{R}_2 = \{(x,y) | x, y \in A, x \ge y\}$$

• A relation \mathscr{R} on a set A is called symmetric if for all $x, y \in A$, we know $(x, y) \in \mathscr{R} \Longrightarrow (y, x) \in \mathscr{R}$

Ex 7.6: Consider A={1,2,3}, are the following relations symmetric or reflexive?

$$\mathcal{R}_1 = \{(1,2), (2,1), (1,3), (3,1)\}$$
$$\mathcal{R}_2 = \{(1,1), (2,2), (2,3), (3,3)\}$$
$$\mathcal{R}_3 = \{(1,1), (2,2), (2,3), (3,3), (3,2)\}$$

Transitive

• A relation \mathscr{R} on a set A is called transitive if for all $x, y, z \in A$, we know $x\mathscr{R}y$ and $y\mathscr{R}z \Longrightarrow x\mathscr{R}z$

Ex 7.10: Consider A={1,2,3,4}, are the following relations transitive?

$$\mathscr{R}_1 = \{(1,1), (2,3), (3,4), (2,4)\}$$

 $\mathscr{R}_2 = \{(1,3), (3,4)\}$

Antisymmetric

• A relation \mathscr{R} on a set A is called antisymmetric if for all $a, b \in A$, if $a\mathscr{R}b$ and $b\mathscr{R}a \Longrightarrow a = b$

Ex 7.11: For any universe 𝒞, relation 𝔅 defined on 𝔅(𝒜)
 by(A, B) ∈ 𝔅 if A ⊆ B. Is this relation antisymmetric?
 How about reflexive, symmetric, and transitve?

Partial Order

• A relation \mathscr{R} on a set A is called partial order if it is reflexive, antisymmetric, and transitive

- Ex 7.14: Are the following relations partial order?
 - Define a relation on \mathbb{Z} by $(a, b) \in \mathscr{R}$ if $a \leq b$
 - Let $n \in \mathbb{Z}^+$, for $x, y \in \mathbb{Z}$, the modulo *n* relation \mathscr{R} is defined by $x\mathscr{R}y$, if x y is a multiple of *n*

Equivalence Relation

• A relation \mathscr{R} on a set A is called equivalence relation if it is reflexive, symmetric, and transitive

• Ex 7.16: Are the following relations equivalence relations?

$$\mathcal{R}_{1} = \{(1,1), (2,2), (3,3)\}$$
$$\mathcal{R}_{2} = \{(1,1), (2,2), (2,3), (3,2), (3,3)\}$$
$$\mathcal{R}_{3} = \{(1,1), (1,3), (2,3), (3,1), (3,3)\}$$

Outline

- 7.1 Rations Revisited: Properties of Relations
- 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs
- 7.3 Partial Orders: Hasse Diagrams
- 7.4 Equivalence Rations and Partitions
- 7.5 Finite State Machines: The Minimization Process

Composite Relation

If \$\mathcal{R}_1 \subset A \times B\$ and \$\mathcal{R}_2 \subset B \times C\$ then the composite relation \$\mathcal{R}_1 \circ \mathcal{R}_2\$ is a relation from \$A\$ to \$C\$ defined by
 \$\mathcal{R}_1 \circ \mathcal{R}_2\$ = {(x, z) | x \in A, z \in C, \exp \in y \in B\$ s.t. \$(x, y) \in \mathcal{R}_1\$, \$(y, z) \in \mathcal{R}_2\$}

• Ex 7.17: Let $A = \{1, 2, 3, 4\}, B = \{w, x, y, z\}, C = \{5, 6, 7\}.$ If $\mathscr{R}_1 = \{(1, x), (2, x), (3, y), (3, z)\}$ and $\mathscr{R}_2 = \{(w, 5), (x, 6)\}.$ Write $\mathscr{R}_1 \circ \mathscr{R}_2$. If $\mathscr{R}_3 = \{(w, 5), (w, 6)\},$ what is $\mathscr{R}_1 \circ \mathscr{R}_3$?

Association and Powers

- Let $\mathscr{R}_1 \subseteq A \times B, \mathscr{R}_2 \subseteq B \times C, \mathscr{R}_3 \subseteq C \times B$, we have $\mathscr{R}_1 \circ (\mathscr{R}_2 \circ \mathscr{R}_3) = (\mathscr{R}_1 \circ \mathscr{R}_2) \circ \mathscr{R}_3$
 - There is no ambiguity if we write $\mathscr{R}_1 \circ \mathscr{R}_2 \circ \mathscr{R}_3$

- Powers of \mathscr{R} on A are recursively defined by: (i) $\mathscr{R}^1 = \mathscr{R}$ and (ii) $\mathscr{R}^{n+1} = \mathscr{R} \circ \mathscr{R}^n$, where $n \in \mathbb{Z}^+$
- Ex 7.19: If $A = \{1, 2, 3, 4\}, \mathscr{R} = \{(1, 2), (1, 3), (2, 4), (3, 2)\},$ what are $\mathscr{R}^2, \mathscr{R}^3, \mathscr{R}^4$?

Zero-One Matrix

An *m* by *n* zero-one matrix *E* = (*e_{ij}*)_{*m×n*}, is a rectangular array with *m* rows and *n* columns, where each *e_{ij}* denotes the entry in the *i*th row and *j*th column, which can be either 0 or 1

• Ex 7.20: *E* is a 3 by 4 zero-one matrix

$$E = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Relation Matrices

• Ex 7.21: Write the following relations into relation matrices $A = \{1, 2, 3, 4\}, B = \{w, x, y, z\}, C = \{5, 6, 7\}$ $\mathscr{R}_1 = \{(1, x), (2, x), (3, y), (3, z)\}$ $\mathscr{R}_2 = \{(w, 5), (x, 6)\}$ $M(\mathscr{R}_1) = \begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{vmatrix} \qquad M(\mathscr{R}_2) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$

 $M(\mathscr{R}_1)M(\mathscr{R}_2) = ?$

 Note that, a convention used here is 1 + 1 = 1, which is called boolean addition

Some Properties

- Let A be the set with n elements. R is a relation on
 A. If M(R) is the relation matrix for R then
 - $M(\mathscr{R}) = \mathbf{0}$ iff $\mathscr{R} = \emptyset$
 - $M(\mathscr{R}) = \mathbf{1}$ iff $\mathscr{R} = A \times A$
 - $M(\mathscr{R}^m) = M(\mathscr{R})^m$, for $m \in \mathbb{Z}^+$

Precedes, Identity Matrix, Transpose

- Let *E* and *F* be two *m* by *n* (0,1) matrices. We say *E* precedes, or is less than *F*, and we write $E \le F$ if $e_{ij} \le f_{ij}, \forall 1 \le i \le m, 1 \le j \le n$
- Identity Matrix:

 $I_n = (\delta_{ij})_{n \times n}$, where $\delta_{ij} = 1$ if $i = j, \delta_{ij} = 0$, o.w.

Transpose:

$$A^{\mathrm{tr}}: a_{ji}^* = a_{ij}$$

Relations in Matrices

- Given a relation *R* on *A*, where |*A*| = *n*. Let *M* be the relation matrix of *R*
 - \mathscr{R} is reflexive iff $I_n \leq M$
 - \mathscr{R} is symmetric iff $M = M^{\mathrm{tr}}$
 - \mathscr{R} is transitive iff $M^2 \leq M$
 - \mathscr{R} is antisymmetric iff $M \cap M^{\mathrm{tr}} \leq I_n$
 - where $1 \cap 1 = 1, 1 \cap 0 = 0 \cap 1 = 0, 0 \cap 0 = 0$

Directed Graph

- Let V be a finite set. A directed graph (or digraph) G on V is made up the elements of V, called the vertices or nodes of G, and a subset E, of V × V, that contains the directed edges, or arcs, of G. The set V is called the vertex set of G, and the set E is called the edge set. G = (V,E) denotes the graph.
- If (a, b) ∈ E, then there is an edge from a to b. Vertex a is called the origin, and b is called terminus. We say b is adjacent from a and a is adjacent to b.
- If a ≠ b then (a, b) ≠ (b, a). An edge from a to a if called a loop.

Examples of Digraphs

- Are there isolated vertices?
- Undirected edges {a,b}={b,a}

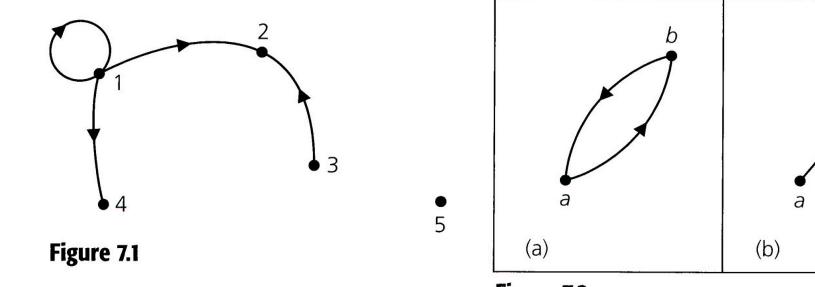
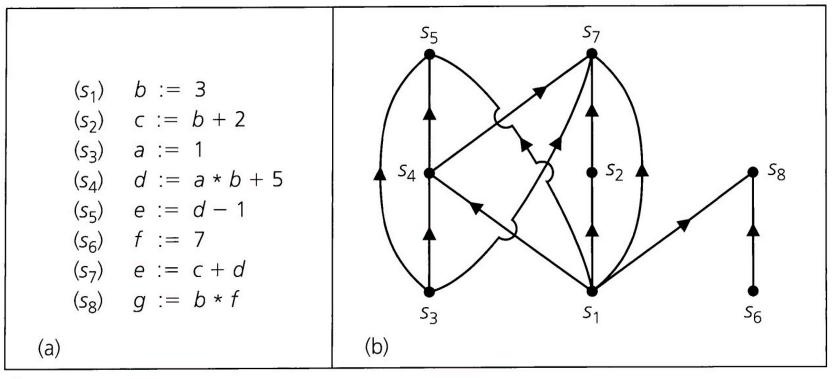


Figure 7.2

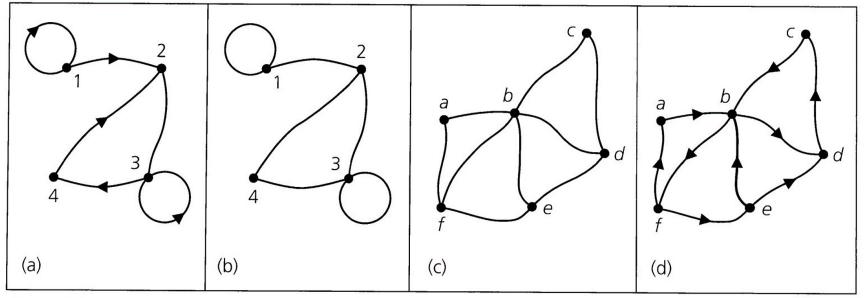
Precedence Graph

Dependency among statements (computer programs)



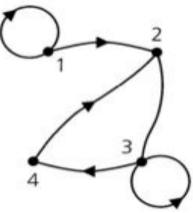
A Few More Terms

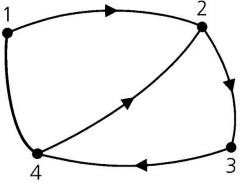
What are: (i) associated undirected graph, (ii) path (cannot contain duplicated vertices), (iii) connected graph, (iv) length, (v) loop, and (vi) cycle?



Strongly Connected

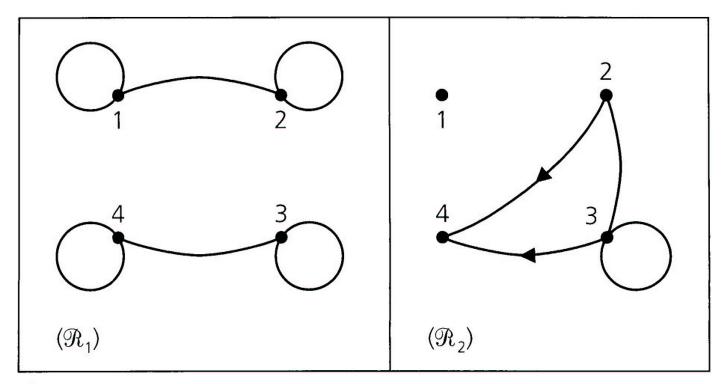
- A directed graph G on V is called strongly connected if there is a path from any vertex x to any vertex y
- The graph on the right is connected but not strongly connected
- The graph on the right is strongly connected and loop-free



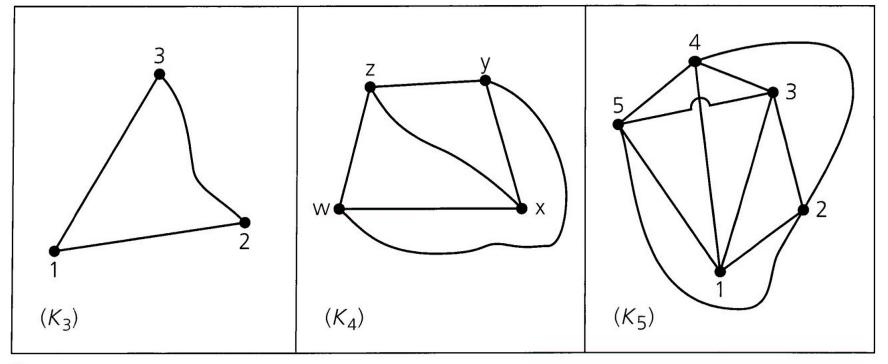


Components

Two components in each graph



Complete Graphs

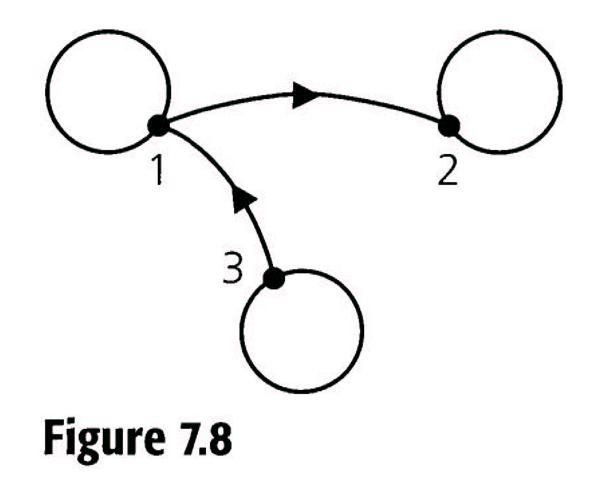


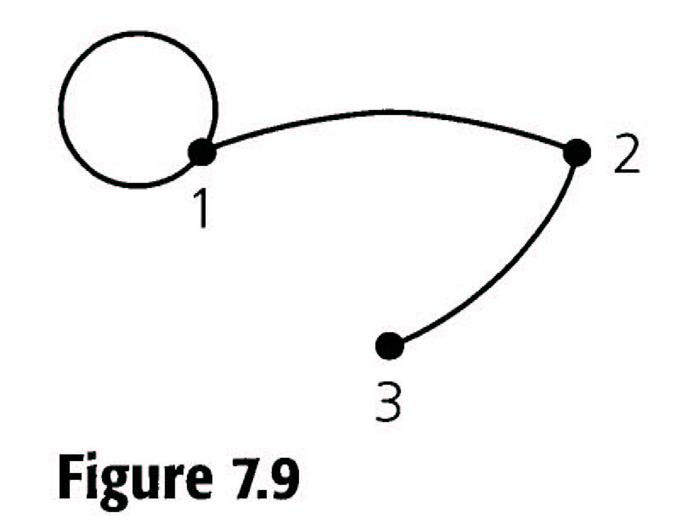
Matrices and Graphs

- A graph G describes a relation *R*
 - If (x,y) is an edge in *G*, then $x \Re y$

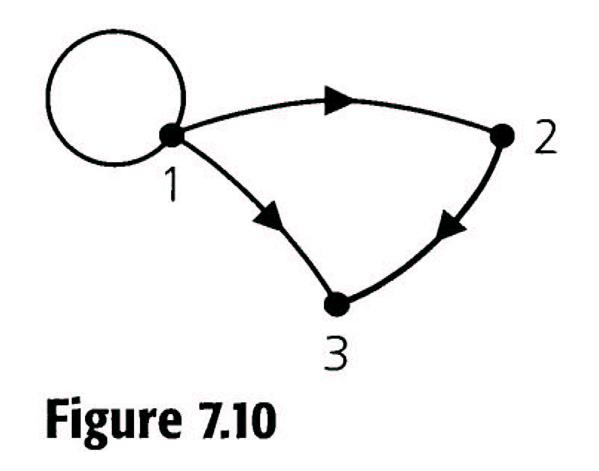
- Both 0-1 matrix and digraph can describe relations
 - The matrix is called the adjacency matrix for G
 - Or a relation matrix for \mathscr{R}

Reflexive and Antisymmetric





Transitive and Antisymmetric



Outline

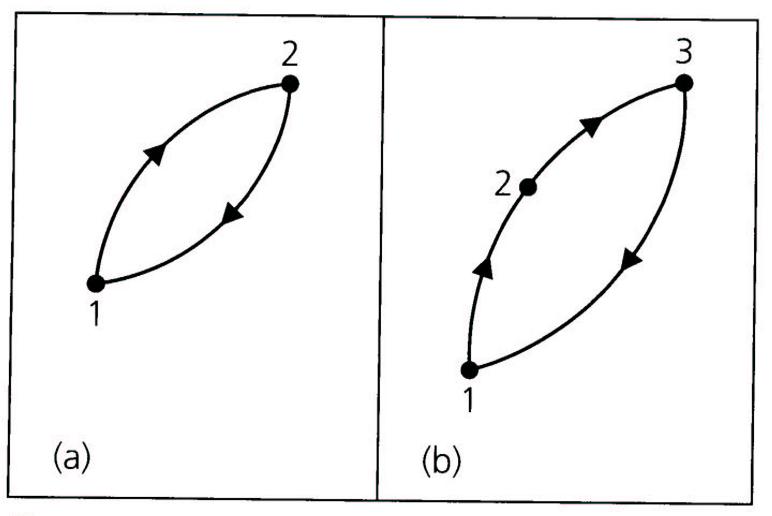
- 7.1 Rations Revisited: Properties of Relations
- 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs
- 7.3 Partial Orders: Hasse Diagrams
- 7.4 Equivalence Rations and Partitions
- 7.5 Finite State Machines: The Minimization Process

Partially Ordered Set

- R is a relation on A. (A, R) is called partially ordered set if relation R on A is a partial order relation
 - Reflexive, antisymmetric, transitive
 - Also called poset

Ex 7.34: Define the relation xRy if x, y are the same course or if x is a prerequisite of y

Not Partial Order



L

Hasse Diagram

- Directions go from bottom up
- Drop loops
- Drop transitive edges

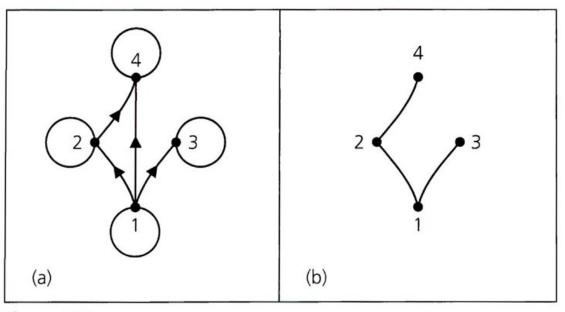


Figure 7.17

Totally Ordered

- If (A, \mathcal{R}) is a poset, A is totally ordered (or linearly ordered) if for any x and y, either $x\mathcal{R}y$ or $y\mathcal{R}x$.
 - \mathscr{R} is called a total order (or a linear order)

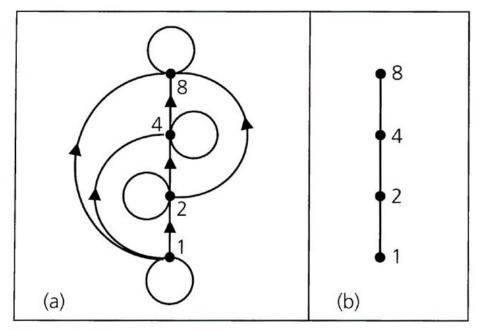
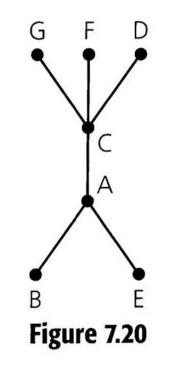


Figure 7.19

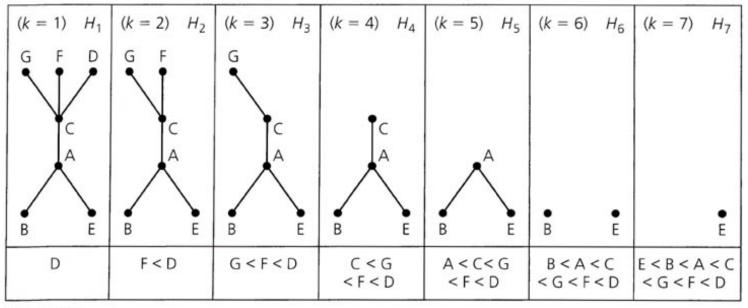
Partial vs. Total Orders

- Consider a car manufacturer which needs to assemble 7 components into a car. The partial order is *R* given below
 - Can the company find a total order \mathscr{T} so that $\mathscr{R} \subseteq \mathscr{T}$?
 - Topological sorting!



Topological Sorting

 Idea: Repeatedly remove the vertex that is not a source (nor an implicit source) of any edge, until we have no vertex left in the Hasse diagram



Topological Sorting Algorithm

- Input: A partial order \mathscr{R} on a set A, where |A| = n
- Step 1: Let k = 1, Let H_1 be the Hasse diagram
- Step 2: Select v_k from H_k, so that no (implicitly directed) edge in H_k starts at v_k
- Step 3: If k < n, remove v_k and edges terminating at v_k from H_k . Call the new Hasse H_{k-1} , and goto step 1
- Step 4: The total order that contains \mathscr{R} is

$$\mathscr{T}: v_n < v_{n-1} < \dots < v_2 < v_1$$

Maximal, Minimal Elements

- If (A, \mathscr{R}) is a poset, an element $x \in A$ is a maximal element of A if for all $a \in A$, $a \neq x \Longrightarrow \neg(x\mathscr{R}a)$. An element $y \in A$ is a minimal element of A if for all $b \in A, b \neq y \Longrightarrow \neg(b\mathscr{R}y)$
- Ex 7.43: Define *R* be "less than or equal to" relation on Z, we find that (Z, R) is a poset with no maximal nor minimal element. How about (N, R)?
- A poset may have multiple maximal (minimal) elements! Recall the topological sorting algorithm.
- If (A, R) is a poset and A is finite, A has maximal and minimum elements (one for each at least)

Least, Greatest Elements

• If (A, \mathscr{R}) is a poset, an element $x \in A$ is a least element of A if $x\mathscr{R}a \ \forall a \in A$. An element $y \in A$ is a greatest element of A if $b\mathscr{R}y \ \forall b \in A$

- If a poset has a greatest (least) element, the element is unique

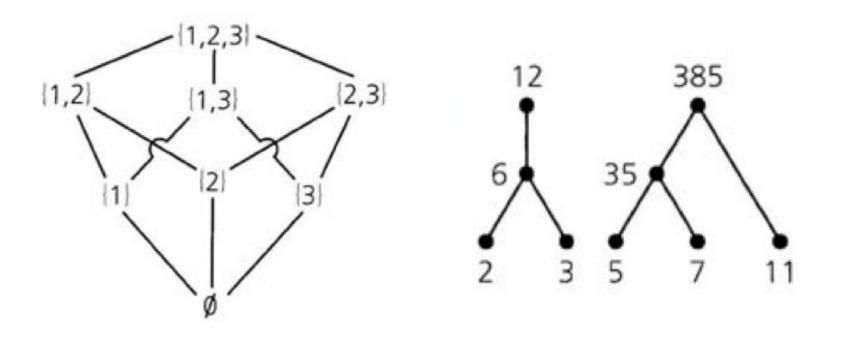
- Ex 7.45: Define $\mathscr{U} = \{1, 2, 3\}$, \mathscr{R} be subset relation
 - Poset $(\mathscr{P}(\mathscr{U}), \subseteq)$ has \varnothing as a least element and \mathscr{U} as a greatest element
 - Let *A* be all the nonempty subsets of \mathscr{U} . (A, \subseteq) has \mathscr{U} as the greatest element. It has no least element, but three minimal elements.

Lower and Upper Bounds

- If (A, \mathscr{R}) is a poset and $B \subseteq A$. An element $x \in A$ is called a lower bound of B if $x \mathscr{R} b \ \forall b \in B$. An element $y \in A$ is called an upper bound of B if $b \mathscr{R} y \ \forall b \in B$
 - $-x' \in A$ is a greatest lower bound (glb) of *B* if it is a lower bound of *B* and $x'' \mathscr{R} x'$ for any other lower bound x'' of *B*
 - $x' \in A$ is a least upper bound (lub) of *B* if it is an upper bound of *B* and $x' \Re x''$ for any other upper bound x'' of *B*
- Ex 7.47: Let $A = \mathscr{P}(\{1, 2, 3, 4\})$ and \mathscr{R} be the subset relation on A. If $B = \{\{1\}, \{2\}, \{1, 2\}\}$ then what are the upper bounds? What is the least upper bound? What is the greatest lower bound?
 - Lub and glb are unique

Lattice

A poset (A, 𝔅) is called a lattice if for all x, y ∈ A the elements lub{x, y} and glb{x, y} both exist in A



Outline

- 7.1 Rations Revisited: Properties of Relations
- 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs
- 7.3 Partial Orders: Hasse Diagrams
- 7.4 Equivalence Rations and Partitions
- 7.5 Finite State Machines: The Minimization Process

Equivalence Relations

• A relation \mathscr{R} on A is an equivalence relation if it's reflexive, symmetric, and transitive.

- Ex 1: For A ≠ Ø, the equality relation is an equivalence relation, in which two elements are related if they are identical.
- Ex 2: Consider a relation on \mathbb{Z} , where $x \mathscr{R} y$ if x y is a multiple of 2.
 - How does this relation split \mathbb{Z} into two subsets?

Partition

- Let *A* be a set and *I* be an index set, where A_i is not empty and $A_i \subseteq A$, for all $i \in I$. $\{A_i\}_{i \in I}$ is a partition of *A* if
 - $A = \bigcup_{i \in I} A_i$ - $A_i \bigcap^{i \in I} A_j = \emptyset$ for all $i \neq j; i, j \in I$

Each subset A_i is a cell, or block of the partition

- Ex 7.52: For A = {1,2,3,...,10}, the following are partitions of A
 - $\{\{1,2,3,4,5\}, \{6,7,8,9,10\}\}$
 - $A_i = \{i, i+5\}, 1 \le i \le 5$

Equivalence Class

Let *R* be an equivalence relation on A. The equivalence class of x ∈ A, denoted as [x], is defined by [x] = {y|y ∈ A, yRx}

- Ex 7.52: \mathscr{R} is a equivalence relation on \mathbb{Z} , where $x\mathscr{R}y$ if 4|(x-y). The four equivalence classes are
 - $[0] = \{4k | k \in \mathbb{Z}\}$
 - $[1] = \{4k + 1 | k \in \mathbb{Z}\}$
 - $[2] = \{4k + 2 | k \in \mathbb{Z}\}$
 - $[3] = \{4k + 3 | k \in \mathbb{Z}\}$

Properties of Equivalence Class

- Let \mathscr{R} is an equivalence relation on A, and $x, y \in A$.
 - $x \in [x]$
 - $x \mathscr{R} y$ iff [x] = [y]
 - [x] = [y] or $[x] \cap [y] = \emptyset$
- This theorem tells us the distinct equivalence classes given by *R* gives us a partition of *A*

Examples of Partitions

• Ex 7.56 (a) : Let $A = \{1, 2, 3, 4, 5\}$ and

 $\mathscr{R} = \{(1,1), (2,2), (2,3), (3,2), (3,3), (4,4), (4,5), (5,4), (5,5)\}$

what's the corresponding partition?

• Ex 7.56 (b): Function $f : A \to B$, where $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $B = \{x, y, z\}$, f is defined as $\{(1, x), (2, x), (3, x), (4, y), (5, z), (6, y), (7, x)\}$

We define a relation \mathscr{R} by $a\mathscr{R}b$ if f(a) = f(b). What is the partition determined by \mathscr{R} ?

Examples of Partitions (cont.)

• If an equivalence relation \mathscr{R} on $A = \{1, 2, 3, 4, 5, 6, 7\}$ results in the partition $A = \{1, 2\} \cup \{3\} \cup \{4, 5, 7\} \cup \{6\}$, what is \mathscr{R} ? What's the size of it?

 $\mathscr{R} = (\{1,2\} \times \{1,2\}) \cup (\{3\} \times \{3\}) \cup (\{4,5,7\} \times \{4,5,7\}) \cup (\{6\} \times \{6\})$

Equivalence Class and Partition

- For a set A
 - Any equivalence relation \mathscr{R} on A leads to a partition of A
 - Any partition of A gives an equivalence relation \mathscr{R} on A
- For any set *A*, there is a one-to-one correspondence between the set of equivalence relations on *A* and the set of partitions of *A*.
 - So counting the number of partitions is the same as counting the equivalence relations.
- Example 7.59: Left as exercise

Outline

- 7.1 Rations Revisited: Properties of Relations
- 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs
- 7.3 Partial Orders: Hasse Diagrams
- 7.4 Equivalence Rations and Partitions
- 7.5 Finite State Machines: The Minimization **Process**

Redundant States

- Redundant state: A state that can be eliminated because other states will perform its function
- Consider a finite state machine $M = (S, \mathscr{I}, \mathscr{O}, \nu, \omega)$, Let a relation $s_1 E_1 s_2$ if $\omega(s_1, x) = \omega(s_2, x)$ for all $x \in \mathscr{I}$
 - E_1 is called *1*-equivalent.
- $s_1 E_k s_2$ if $\omega(s_1, x) = \omega(s_2, x)$ for all $x \in \mathscr{I}^k$
 - E_k is called *k*-equivalent
- $s_1 E s_2$ if $s_1 E_k s_2$ is true for all $k \ge 1$
 - E is called equivalent

Minimization Algorithm

- To get rid of redundant states
- Step 1: Let k=1, find states that are 1-equivalent by examining the output rows in the state table. This gives partition P₁ and relation E₁
- Step 2: When P_k is found, we obtain P_{k+1} by knowing that if $s_1 E_k s_2$, then $s_1 E_{k+1} s_2$ when $\nu(s_1, x) E_k \nu(s_2, x) \ \forall x \in \mathscr{I}$
 - This is true if $\nu(s_1, x)$ and $\nu(s_2, x)$ are in the same cell of P_k
- Step 3: If $P_{k+1} = P_k$, we are done, o.w. goto step 2

A Simple Example

- Ex 7.60: If $\mathscr{I} = \mathscr{O} = \{0, 1\}$, the state table is given below. What is P_1 ? $P_1 : \{s_1\}, \{s_2, s_5, s_6\}, \{s_3, s_4\}$
- Show $\nu(s_3, x) E_1 \nu(s_4, x)$, and thus?

Table 7.1

• Show $\neg [\nu(s_5, x)E_1\nu(s_6, x)]$, and thus?

$$P_2: \{s_1\}, \{s_2, s_5\}, \{s_6\}, \{s_3, s_4\}$$

- Since $P_1 \neq P_2$, we need to get P_3
 - Because $P_3 = P_2$, we stop here
 - s_5, s_4 are redundant states

	ν		ω	
	0	1	0	1
<i>s</i> ₁	<i>S</i> 4	<i>s</i> ₃	0	1
<i>s</i> ₂	S 5	<i>s</i> ₂	1	0
<i>s</i> ₃	<i>s</i> ₂	<i>S</i> 4	0	0
<i>S</i> 4	S 5	<i>s</i> ₃	0	0
S 5	<i>s</i> ₂	S 5	1	0
<i>s</i> ₆	<i>s</i> ₁	<i>s</i> ₆	1	0

Refinement

• P_2 is called a refinement of P_1 , $P_2 \le P_1$, if every cell of P_2 is contained in a cell of P_1 . When $P_2 \le P_1$ and $P_2 \ne P_1$, we write $P_2 < P_1$.

• In the minimization process, if $k \ge 1$ and $P_k = P_{k+1}$, then $P_{r+1} = P_r$ for all $r \ge k+1$

Distinguishing String

- A sample string with length k+1that leads to different outputs for states s₁ and s₂
- Ex 7.61: Find the minimal distinguish string for s_2 and s_6 in the finite state machine of Ex 7.60

$$P_{2}: \{s_{1}\}, \{s_{2}, s_{5}\}, \{s_{6}\}, \{s_{3}, s_{4}\}$$

$$P_{1}: \{s_{1}\}, \{s_{2}, s_{5}, s_{6}\}, \{s_{3}, s_{4}\}$$

Table 7.1

	ν		ω	
	0	1	0	1
<i>s</i> ₁	<i>s</i> ₄	<i>S</i> 3	0	1
<i>s</i> ₂	\$5	<i>s</i> ₂	1	0
<i>S</i> 3	<i>s</i> ₂	<i>s</i> ₄	0	0
<i>S</i> 4	\$5	<i>s</i> ₃	0	0
S 5	<i>s</i> ₂	S 5	1	0
<i>S</i> ₆	<i>s</i> ₁	<i>s</i> ₆	1	0

Take-home Exercises

- Exercise 7.1: 1, 5, 6, 9, 17
- Exercise 7.2: 4, 14, 17, 18, 26
- Exercise 7.3: 1, 7, 18, 23, 25
- Exercise 7.4: 2, 6, 7, 12, 14
- Exercise 7.5: 1, 3