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Ex 11.1: (2)

a) {be}ie f}{f, 9119, e} {e b} {b,c} {c, d}
o) {behiefhLif, 9} 19 e}l {e d}

c) {b,e},{e,d}

d {be}ief}{f, 9} {9, e} {e b}

e) {behief}{f, 9119, e} {e d}{d, c},{c, b}
f) {b,a},{a,c} {c b}



L
Ex 11.1: (3)

- 6



L
Ex 11.1: (5)

- Each path from a to h must include the edge {b, g}. There are
three paths (in ¢) from a to b and three paths (in &) from g to h.
Consequently, there are nine paths fromato hinG.

- There iIs only one path of length 3, two of length 4, three of
length 5, two of length 6, and on of length 7.



L
Ex 11.1: (8)

- The smallest number of guards needed Is 3 — e.g., at vertices a,
g, L.



L
Ex 11.1: (13)

- This relation is reflexive, symmetric and transitive, so it Is an
equivalence relation. The partition of IV induced by R yields the
(connected) components of G.



L
Ex 11.2: (1)

a) Three:
(1) {b,a},{a,c}{c,d},{d, a}
(2) {f,c}t{c,a}{a,d},{d,c}
(3) {i,d}. {d,c}{c,a},{a d}

b) Gy isthe subgraph induced by U = {a, b,d, f,g,h,i,j}.
G, =G —{c}.

¢) G, isthe subgraph induced by W = {b,c,d, f,9,i,j}.
G, =G —{a,h}.

d) Fig.(1).

D b @




L
Ex 11.2: (2)

a) Gy 1S not an induced subgraph of G if there exists an edge
{a,b} in E suchthata,b € V, but {a, b} & E;.

h) Lete ={a,d}. Then G — e is a subgraph of G but it is not an
Induced subgraph.



L
Ex 11.2: (3)

a) There are 2° = 512 spanning subgraphs.
b) Four of the spanning subgraph in part (a) are connected.

c) 2°



L
Ex 11.2: (9)

a)

b)

Each graph has four vertices that are incident with three edges.
In the second graph these vertices (w, x, y, z) form a cycle.
This is not so for the corresponding vertices (a, b, g, h) in the
first graph. Hence the graphs are not isomorphic.

In the first graph the vertex d is incident with four edges, No
vertex in the second graph has this property, so the graphs are
not iIsomorphic.



L
Ex 11.2: (15)

a) Here f must also maintain directions. So if (a, b) € E4, then

(f(@),f (b)) € E;.

b) They are not isomorphic. Consider vertex a in the first graph.
It is incident to one vertex and incident from two other
vertices. No vertex in the other graph has this property.



Ex 11.3: (3)

- Since 38 = 2|E| = ).,y deg(v) = 4|V|, the largest possible
value for |V| is 9. We can have (i) seven vertices of degree 4
and two of degree 5; or (i) eight vertices of degree 4 and one of
degree 6. The graph in part (a) of the figure is an example for
case (1); an example for case (ii) Is provided in part (b) of the
figure.




L
Ex 11.3: (4)

a)

b)

We must note here that G need not be connected. Up to
Isomorphism G Is either a cycle on six vertices or (a disjoint
union of) two cycles, each on three vertices.

Here G Is either a cycle on seven vertices or (a disjoint union
of) two cycles — one on three vertices and the other on four.

For such a graph G, G, is one of the graphs in part (a). Hence
there are two such graphs G;.

Here G, is one of the graphs in part (b). There are two such
graphs G (up to isomorphism).

Let G; = (V4, E;)be a loop-free undirected (n — 3)-regular
graph with |V| = n. Up to isomorphism the number of such
graphs G, Is the number of partitions of n into summands that
exceed 2.



L
Ex 11.3: (5)

a) Vil =8 =|V,|; |[E1| = 14 = |E,].

b) For V; we find that deg(a) = 3,deg(b) = 4,deg(d) = 3,
deg(e) = 3,deg(f) = 4,deg(g) = 4, and deg(h) = 3. For V, we
have deg(s) = 3,deg(t) = 4,deg(u) = 4,deg(v) = 3,deg(w) =
4, deg(x% = 3, deg(y) = 3, and deg(z) = 4. Hence each of the
two graphs has four vertices of degree 3 and four of degree 4.

c) Despite the results in parts (a) and (b) the graphs G; and G, are not
Isomorphic.

In the graph G, the four vertices of degree 4 — namely, t,u, w, and z —

are on a cycle of length 4. For the graph G, the vertices b, c, f, and g —

each of degree 4 — do not lie on a cycle of length 4.

A second way to observe that G; and G, are not isomorphic is to
consider once again the vertices of degree 4 in each graph. In G, these
vertices induce a disconnected subgraph consisting of the two edges
{b, c}and {f, g}. The four vertices of degree 4 in graph G, induce a
connected subgraph that has five edges — every possible edge except

{u,z}.



L
Ex 11.3: (20)

a) a=->b->c->g->k->jog->b-of-o>j-oi->f->
e—->i—->h—->d->e—->b-d-a.

hy d->a-b->d-g-i—-e->f->i->j->f->b->c-
g—=>k—->j->g-b-e.



L
Ex 11.3: (23)

- Yes. Model the situation with a graph where there is a vertex for
each room and the surrounding corridor. Draw an edge between
two vertices if there is a door common to both rooms, or a room
and the surrounding corridor. The resulting multigraph is
connected with every vertex of even degree.



L
Ex 11.4:(2)

- From the symmetry in these graphs the following demonstrate
the situations we must consider
K-:: K;3:




Ex 11.4: (3)

4 Graph Number of vertices ~ Number of edges
K, 11 28
K; 11 18 77
Kmn m-+n mn

h)y m=26



L
Ex 11.4: (13)

a) a: {12}, f: {4,5},
b: {3,4}, g: {2,5},
c: {1,5}, h: {2,3},
d: {2,4}, 1i: {1,3},
e: {3,5}, j: {1,4}.

h) G iIs (Isomorphic to) the Petersen graph. (See Fig. 11.52(a)).



L
Ex 11.4: (14)

- Graph (1) shows that the first graph contains a subgraph
homeomorphic to K3 3, so it is not planar. The second graph is
planar and isomorphic to the second graph of the exercise. The
third graph provides a subgraph homeomorphic to K3 3 so the
third graph given here is not planar. Graph (6) is not planar
because it contains a subgraph homeomorphic to K.




Ex 11.4: (26)

a)

b)

D
~—"

The correspondence a - v,b - w,c = y,d — z,e = x provides

an isomorphism.
)] 2

In the first graph in part (b) vertex ¢’ had degree 5. Since no vertex
had degree 5 in the second graph, the two graphs cannot be
|somorph|c

{a’, ¢} {c, b}, a'}}; {({p, v} {r e} {r, 1}, {r, s}}.



Ex 11.5: (1)

1 ¢

(8) (b) (¢} (d)




L
Ex 11.5: (3.a~3.d)

a)

b)

c)
d)

Hamiltoncycle:a-g—-k—->i—->h—->b->c—->d—-j-
f—oe—a
Hamiltoncycle:a-d->b—-e—>g—->j—-i—->f->h-
c—a
Hamiltoncycle.a-h—-e—->f->g—->i->d—->c—->b—-a
The edges {a, c}, {c,d},{d, b}, {b, e}, {e, f},{f, g} provide a
Hamilton path for the given graph. However, there is no
Hamilton cycle, for such a cycle would have to include the

edges {b,d},{b, e}, {a,c} {a, e}, {g,f} and {g, e} —and,
consequently, the vertex e will have degree greater than 2.



L
Ex 11.5: (3.6, 3.f)

e) Thepatha->b-oc—-od-oe—->joi-oh-og->f-ok->l->m-
n — o IS one possible Hamilton path for this graph. Another possibility is
thepatha-b->c—->d—-i-h->g->f->k->1l-m-n-o0-

j — e. However, there is no Hamilton cycle. For if we try to construct a
Hamilton cycle we must include the edges

{a, b}, {a, f}L,{f Kk}, {k 1}, {d, e}, {e j} {j, 0} and {n, o}. This then forces us
to eliminate the edges {f, g} and {i, j} from further consideration . Now
consider the vertex i,. If we use edges {d,i}and {i,n}, then we have a
cycle on the vertices d, e, j, o,n and i — and we cannot get a Hamilton
cycle for the given graph. Hence we must use only one of the edges

{d,i} and {i, n}. Because of the symmetry in this graph let us select edge
{d, i} —and then edge {h, i} so that vertex i will have degree 2 in the
Hamilton cycle we are trying to construct. Since edges {d, i} and {d, e} are
now being used, we eliminate edge {c, d} and this then forces us to
Include edges {b c}and {e, h} in our construction. Also we must include
the edge {m, n} since we eliminated edge {i, n} from consideration. Next
we eliminate edge {l, g}. But now we have eliminated the four edges
{b,g},{f, g9}, {h g}and {l, g} and g is consequently isolated.

f)  For this graph we find the Hamiltoncyclea - b - c—>d - e —>j -
[>h->g->l-m-n->o0->t-os->r->q-p->k-f-a.



L
Ex 11.5: (4)

a)

b)

Consider the graph as shown in Fig.11.52(a). We demonstrate one case. Start
at vertex a and consider the partial path a - f — i — d. These choices require
the removal of edge {f,h} and {g,i} from further consideration since each
vertex of the graph will be incident with exactly two edges in the Hamilton
cycle. At vertex d we can go to either vertex c or vertex e. (i) If we go to
vertex ¢ we eliminate edge {e,d} from consideration, but we must now incude
edges {e,j} and {e,a}, and this forces the elimination of edge {a,b}. Now we
must consider vertex b, for by eliminating edge {a,b}. We are now required to
include edges {b,g} and {b,c} in the cycle. This forces us to remove edge {c,h}
from further consideration. But we have now removed edges {f,h} and {c,h}
and there is only one other edge that is incident with h, so no Hamilton cycle
can be obtained. (ii) Selecting vertex e after d, we remove edge {d,c} and
include {c,h} and {b,c}. Having removed {g,i} we must include {g,b} and
{g,j}. This forces the elimination of {a,b}, the inclusion of {a,e} (and the
elimination of {e,j}). We now have a cycle containing a, f, i, d, e, hence this
method has also failed.

However, this graph does have a Hamilton path.a - b > c—>d e —>j -
h—-f->i-g.

For example, remove vertex j and the edges {e,j}, {9,j}, {h,j}. Then
e—->a—->f->h->c—->b—-g—i—-d- eprovidesaHamilton cycle for
this subgraph.



L
Ex 11.5: (6)

- Let the vertices on the cycle (rim) of W,, be consecutively
denoted by v4, v, ..., v, and let v,,, ; denote the additional
(central) vertex of W,,. Then the following cycles provide n
Hamilton cycles for the wheel graph W/,.

(1) V1 2 Vpp1 2 V22 U3 U= o 2 Upg 2 Uy Vg
(2) v 2 V2 Up D V3D Uy D VU Up o Uy,
(3) Vi 2V V3D Upy 2 Uy D VUp > Up o Uy,

(N-1) vy 2 V2 V32 Vy= o+ = V= Upgy ™ V= Vg
(N) v DV U3 V> D Uy Uy VUpyq > Vg,



L
Ex 11.5: (19)

- This follows from Theorem 11.9, since for all (nonadjacnet)
x,y € V,deg(x) + deg(y) =12 > 11 = |V]|.



L
Ex 11.6: (1)

- Draw a vertex for each species of fish. If two species x, y must
be kept In separate aquaria, draw the edge {x, y}. The smallest
number of aquaria needed is then the chromatic number if the
resulting graph.



L
Ex 11.6: (2)

- Draw a vertex for each committee. If someone serves on two
committees c;, ¢; draw the edge joining the vertices for ¢; and ;.
Then the least number of meeting times is the chromatic number
of the graph.



L
Ex 11.6: (5)

a) P(G,A) =11 —1)3.
b) For G = Ky, we find that P(G,2) = 2(A — D™ x(Ky,) = 2.



L
Ex 11.6: (6)

a)

b)

c)

(1) Here we have A choices for vertex a, 1 choice for vertex b
(the same choice as that for vertex a), andA — 1 choices for
each of vertices x, y, z. Consequently, there are

A(A — 1)3proper colorings of K, ; where vertices a and b are
colored the same.

(i) Now we have A choices for vertex a, A — 1 choices for
vertex b, and A — 2 choices for each of the vertices x, y, and z.
And here there are A(A1 — 1)(A — 2)3 proper colorings.

Since the two cases in part (a) are exhaustive and mutually
exclusive, the chromatic polynomial for K, 5 1s
AA-1)3+21 -1 —2)3

= A -1 =52 +101—-7). x(Ko3) = 2.

P(Kynd) =22 = D"+ A - 1A= 2)" x(K;p) = 2.



L
Ex 11.6: (13)

A VI =2m Bl = (3) Boey deg@) = (5) [4(2) + (2n — H(3)] =
(%)[8+6n—12] —3n—2,n3>1.

) Forn=1,wefindthat G = K, and P(G,A)) =A(1—1) =
A(A —1)(A%2 — 31 + 3) 1 1so the result is true in this first case. For
n = 2, we have G = C,, the cycle of length 4, and here P(G, 1) =
AA-1)3-211-1)A-2) =211 —-1)(1* =31+ 3)?"1.So the
result follows for n = 2. Assuming the result true for an arbitrary
(but fixed) n > 1, consider the situation for n + 1. Write
G = G U G,, where G, Is C, and G-, Is the ladder graph for n rungs.

Then G; N G, = K,, so from Theorem 11.14 we have P(G, 1) =

P(Gy, A7) - IIZEZ‘Z’B = A(1 — 1)(1? — 31 + 3)™. Consequently, the
2

result is true for all n > 1, by the Principle of Mathematical

Induction.
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