
Solution 

Ex 2.1: 4, 6, 13, 17 

Ex 2.2: 6, 14, 15, 19 

Ex 2.3: 3, 8, 10, 12 

Ex 2.4: 3, 6, 8, 19 

Ex 2.5: 7, 19, 21, 24 



a) r → 𝑞 

b) q → 𝑝 

c) (s ∧ 𝑟) → 𝑞) 

Ex 2.1: (4) 



a) True 

b) False 

c) True 

Ex 2.1: (6) 



 𝑞 → ¬𝑝 ∨ 𝑟 ∧ ¬𝑠 ∧ ¬𝑠 → ¬𝑟 ∧ 𝑞 : 𝑇𝑟𝑢𝑒 

→ 𝑞 → ¬𝑝 ∨ 𝑟 ∧ ¬𝑠 : 𝑇𝑟𝑢𝑒 

→ ¬𝑝 ∨ 𝑟 ∧ ¬𝑠 : 𝑇𝑟𝑢𝑒 

→ 𝑠: 𝐹𝑎𝑙𝑠𝑒 

→ ¬𝑝 ∨ 𝑟: 𝑇𝑟𝑢𝑒 

→ ¬𝑠 → ¬𝑟 ∧ 𝑞 : 𝑇𝑟𝑢𝑒 

→ ¬𝑟 ∧ 𝑞 : 𝑇𝑟𝑢𝑒 

→ 𝑟: 𝐹𝑎𝑙𝑠𝑒 

→ 𝑝: 𝐹𝑎𝑙𝑠𝑒 

 

 

 

Ex 2.1: (13) 



Consider the following possibilities: 

 Suppose that either the first or the second statement is the true one. 
Then statements (3) and (4) are false — so their negation are true. 
And we find from (3) that Tyler did not eat the piece of pie — 
while from (4) we conclude that Tyler did eat the pie. 

 Now we’ll suppose that statement (3) is the only true statement. So 
statements (3) and (4) no longer contract each other. But now 
statement (2) is false, and we have Dawn guilty (from statement (2)) 
and Tyler guilty (from statement (3)). 

 Finally, consider the last possibility — that is, statement (4) is the 
true one. Once again statement (3) and (4) do not contradict each 
other, and here we learn from statement (2) that Dawn is the vile 
culprit. 

Ex 2.1: (17) 



a) ¬ 𝑝 ∧ 𝑞 ∨ 𝑟 ∧ ¬𝑝 ∨ ¬𝑞 ∨ 𝑟  
↔ ¬𝑝 ∨ ¬𝑞 ∧ ¬𝑟 ∨ 𝑝 ∧ 𝑞 ∧ ¬𝑟  
↔ ¬𝑞 ∧ ¬𝑟 ∨ ¬𝑝 ∨ 𝑝 ∧ 𝑞 ∧ ¬𝑟  
↔ ¬𝑞 ∧ ¬𝑟 ∨ 𝑇0 ∧ ¬𝑝 ∨ 𝑞 ∧ ¬𝑟  
↔ ¬𝑞 ∧ ¬𝑟 ∨ ¬𝑝 ∨ 𝑞 ∧ ¬𝑟  
↔ ¬𝑝 ∨ [ ¬𝑞 ∨ 𝑞 ∧ ¬𝑟] ↔ ¬𝑝 ∨ ¬𝑟 

b) ¬ (𝑝 ∧ 𝑞) → 𝑟 ↔ ¬ ¬(𝑝 ∧ 𝑞) ∨ 𝑟 ↔ 𝑝 ∧ 𝑞 ∧ ¬𝑟 

c) 𝑝 ∧ 𝑞 ∨ ¬𝑟  

d) ¬𝑝 ∧ ¬𝑞 ∧ ¬𝑟 
 

 

 

Ex 2.2: (6) 



Ex 2.2: (14.a & 14.b) 

a) . 

 

 

 

 

b) Replace each occurrence of p by 𝑝 ∨ 𝑞. Then we have the 

tautology 𝑝 ∨ 𝑞 → [𝑞 → [(𝑝 ∨ 𝑞) ∧ 𝑞]] by the first substitution 

rule. Since 𝑝 ∨ 𝑞 ∧ 𝑞 ↔ 𝑞, by the absorption laws, it follows 

that 𝑝 ∨ 𝑞 → [𝑞 → 𝑞] ↔T0 

 

𝒑 𝒒 𝒑 ∧ 𝒒 𝒒 → (𝒑 ∧ 𝒒) 𝒑 → [𝒒 → 𝒑 ∧ 𝒒 ] 

0 0 0 1 1 

0 1 0 0 1 

1 0 0 1 1 

1 1 1 1 1 



 

 

 

 

 

 

The statement is not a tautology. 

 

Ex 2.2: (14.c) 

𝒑 𝒒 𝒑 ∨ 𝒒 𝒑 ∧ 𝒒 𝒒 → (𝒑 ∧ 𝒒) (𝒑 ∨ 𝒒) → [𝒒 → 𝒑 ∧ 𝒒 ] 

0 0 0 0 1 1 

0 1 1 0 0 0 

1 0 1 0 1 1 

1 1 1 1 1 1 



a) ¬𝑝 ↔ (𝑝 ↑ 𝑝) 

b) 𝑝 ∨ 𝑞 ↔ ¬𝑝 ↑ ¬𝑞 ↔ 𝑝 ↑ 𝑝 ↑ 𝑞 ↑ 𝑞  

c) 𝑝 ∧ 𝑞 ↔ ¬¬ 𝑝 ∧ 𝑞 ↔ ¬ 𝑝 ↑ 𝑞 ↔ 𝑝 ↑ 𝑞 ↑ 𝑝 ↑ 𝑞  

d) (𝑝 → 𝑞) ↔ ¬𝑝 ∨ 𝑞 ↔ ¬(𝑝 ∧ ¬𝑞) ↔ 𝑝 ↑ ¬𝑞 ↔ 𝑝 ↑ 𝑞 ↑ 𝑞  

e) 𝑝 ↔ 𝑞 ↔ 𝑝 → 𝑞 ∧ 𝑞 → 𝑝 ↔ 𝑡 ∧ 𝑢 ↔ 𝑡 ↑ 𝑢 ↑ 𝑡 ↑ 𝑢 , 

where 𝑡 stands for 𝑝 ↑ 𝑞 ↑ 𝑞  and 𝑢 for 𝑞 ↑ 𝑝 ↑ 𝑝 . 

Ex 2.2: (15) 



(a) 𝐩 ∨ [𝐩 ∧ (𝐩 ∨ 𝐪)] Reasons 

↔ 𝑝 ∨ 𝑝 

↔ 𝑝 

Absorption Law 

Idempotent 

(b) 𝐩 ∨ 𝐪 ∨ (¬𝐩 ∧ ¬𝐪 ∧ 𝐫) Reasons 

↔ (𝑝 ∨ 𝑞) ∨ (¬(𝑝 ∨ 𝑞) ∧ 𝑟) 

↔ [ 𝑝 ∨ 𝑞 ∨ ¬ 𝑝 ∨ 𝑞 ] ∧ (𝑝 ∨ 𝑞 ∨ 𝑟) 

↔ 𝑇0 ∧ (𝑝 ∨ 𝑞 ∨ 𝑟) 

↔ 𝑝 ∨ 𝑞 ∨ 𝑟 

DeMorgan’s Laws 

Distributive Law of ∨ over ∧ 

Inverse Law 

Identity Law 

Ex 2.2: (19.a & 19.b) 



Ex 2.2: (19.c) 

(c) (¬𝐩 ∨ ¬𝐪) → (𝐩 ∧ 𝐪 ∧ 𝐫) Reasons 

↔ ¬ ¬𝑝 ∨ ¬𝑞 ∨ 𝑝 ∧ 𝑞 ∧ 𝑟  

↔ ¬¬𝑝 ∧ ¬¬𝑞 ∨ 𝑝 ∧ 𝑞 ∧ 𝑟  

↔ 𝑝 ∧ 𝑞 ∨ 𝑝 ∧ 𝑞 ∧ 𝑟  

↔ 𝑝 ∧ 𝑞 

𝑠 → 𝑡 ↔ ¬𝑠 ∨ 𝑡 

DeMorgan’s Laws 

Law of Double Negation 

Absorption Law 



a) If 𝑝 has the truth value 0, then so does 𝑝 ∧ 𝑞. 

b) When 𝑝 ∨ 𝑞 has the truth value 0, then the truth value of 𝑝 (and that 
of 𝑞) is 0. 

c) If 𝑞 has the truth value 0, then the truth value of 𝑝 ∨ 𝑞 ∧ ¬𝑝  is 0, 
regardless of the truth value of 𝑝. 

d) The statement 𝑞 ∨ 𝑠 has the truth value 0 only when each of 𝑞, 𝑠 has 
the truth value 0. Then (𝑝 → 𝑞) has truth value 1 when 𝑝 has the truth 
value 0; (𝑟 → 𝑠) has truth value 1 when 𝑟 has truth value 0. But then 
(𝑝 ∨ 𝑟) must have truth value 0, not 1. 

e) For (¬𝑝 ∨ ¬𝑟) the truth value is 0 when both 𝑝, 𝑟 have truth value 1. 
This then forces 𝑞, 𝑠 to have truth value 1, in order for (𝑝 → 𝑞), 
(𝑟 → 𝑠) to have truth value 1. However, this results in truth value 0 
for (¬𝑞 → ¬𝑠). 

Ex 2.3: (3) 



1) Premise 

2) Step (1) and the Rule of Conjunctive 

Simplification 

3) Premise 

4) Steps (2), (3) and the Rule of 

Detachment 

5) Step (1) and the Rule of Conjunctive 

Simplification 

6) Steps (4), (5) and the Rule of 

Conjunction 

7) Premise 

8) Step (7) and 𝑟 → 𝑠 ∨ 𝑡 ↔
[¬ 𝑠 ∨ 𝑡 → 𝑟] 

9) Step (8) and DeMorgan’s Laws 

10)Steps (6), (9) and the Rule of 

Detachment 

11)Premise 

12)Step (11) and  

(¬𝑝 ∨ 𝑞) → 𝑟 ↔ [¬𝑟 → ¬(¬𝑝
13)Step (12) and DeMorgan’s Laws 

and the Law of Double Negation 

14)Steps (10), (13) and the Rule of 

Detachment 

15)Step (14) and the Rule of 

Conjunctive Simplification 

Ex 2.3: (8) 



(a) Reasons 

1) 𝑝 ∧ ¬𝑞 

2) 𝑝 

3) 𝑟 

4) 𝑝 ∧ 𝑟 

5) ∴ (𝑝 ∧ 𝑟) ∨ 𝑞 

1) Premise 

2) Step (1) and the Rule of Conjunctive Simplification 

3) Premise 

4) Steps (2), (3) and the Rule of Conjunction 

5) Step (4) and the Rule of Disjunctive Amplification 

(b) Reasons 

1) 𝑝, 𝑝 → 𝑞 

2) 𝑞 

3) ¬𝑞 ∨ 𝑟 

4) 𝑞 → 𝑟 

5) ∴ 𝑟 

1) Premise 

2) Step (1) and the Rule of Detachment 

3) Premise 

4) Step (3) and (¬𝑞 ∨ 𝑟) ↔ (𝑞 → 𝑟) 

5) Steps (2), (4) and the Rule of Detachment 

Ex 2.3: (10.a & 10.b) 



(c) Reasons 

1) 𝑝 → 𝑞, ¬𝑞 

2) ¬𝑝 

3) ¬𝑟 

4) ¬𝑝 ∧ ¬𝑟 

5) ∴ ¬(𝑝 ∨ 𝑟) 

1) Premises 

2) Step (1) and Modus Tollens 

3) Premise 

4) Steps (2), (3) and the Rule of Conjunction 

5) Step (4) and DeMorgan’s Laws 

(d) Reasons 

1) 𝑟, 𝑟 → ¬𝑞 

2) ¬𝑞 

3) 𝑝 → 𝑞  

4) ¬𝑝 

1) Premises 

2) Step (1) and the Rule of Detachment 

3) Premise 

4) Steps (2), (3) Modus Tollens 

Ex 2.3: (10.c & 10.d) 



(e) Reasons 

1) 𝑝 

2) ¬𝑞 → ¬𝑝 

3) 𝑝 → 𝑞 

4) 𝑞 

5) 𝑝 ∧ 𝑞 

6) 𝑝 → 𝑞 → 𝑟  

7) 𝑝 ∧ 𝑞 → 𝑟 

8) ∴ 𝑟 

1) Premise 

2) Premise 

3) Step (2) and 𝑝 → 𝑞 ↔ (¬𝑞 → ¬𝑝) 

4) Steps (1), (3) and the Rule of Detachment 

5) Steps (1), (4) and the Rule of Conjunction 

6) Premise 

7) Step (6), and 𝑝 → 𝑞 → 𝑟 ↔ [ 𝑝 ∧ 𝑞 → 𝑟] 
8) Steps (5), (7) and the Rule of Detachment 

Ex 2.3: (10.e) 



(f) Reasons 

1) 𝑝 ∧ 𝑞 

2) 𝑝 

3) 𝑝 → (𝑟 ∧ 𝑞) 

4) 𝑟 ∧ 𝑞 

5) 𝑟 

6) 𝑟 → 𝑠 ∨ 𝑡  

7) 𝑠 ∨ 𝑡 

8) ¬𝑠 

9) ∴ 𝑟 

1) Premise 

2) Step (1) and the Rule of Conjunctive Simplification 

3) Premise 

4) Step (2), (3) and the Rule of Detachment 

5) Steps (4) and the Rule of Conjunctive Simplification 

6) Premise 

7) Steps (5), (6) and the Rule of Detachment 

8) Premise 

9) Steps (7), (8) and the Rule of Disjunctive Syllogism 

Ex 2.3: (10.f) 



(g) Reasons 

1) ¬𝑠, 𝑝 ∨ 𝑠 

2) 𝑝 

3) 𝑝 → (𝑞 → 𝑟) 

4) 𝑞 → 𝑟 

5) 𝑡 → 𝑞 

6) 𝑡 → 𝑟 

7) ∴ ¬𝑟 → ¬𝑡 

1) Premise 

2) Step (1) and the Rule of Disjunctive Syllogism 

3) Premise 

4) Step (2), (3) and the Rule of Detachment 

5) Premise 

6) Steps (4), (5) and the Law of the Syllogism 

7) Step (6) and (𝑡 → 𝑟) ↔ (¬𝑟 → ¬𝑡) 

Ex 2.3: (10.g) 



(h) Reasons 

1) ¬𝑝 ∨ 𝑟 

2) 𝑝 → 𝑟 

3) ¬𝑟 

4) ¬𝑝 

5) 𝑝 ∨ 𝑞 

6) ¬𝑝 → 𝑞 

7) ∴ 𝑞 

1) Premise 

2) Step (1) and (𝑝 → 𝑟) ↔ (¬𝑝 ∨ 𝑟) 

3) Premise 

4) Step (2), (3) and Modus Tollens 

5) Premise 

6) Steps (5) and (𝑝 ∨ 𝑞) ↔ (¬¬𝑝 ∨ 𝑞) ↔ (¬𝑝 → 𝑞) 

7) Steps (4), (6) and Modus Ponens 

Ex 2.3: (10.h) 



𝑝: Rochelle gets the supervisor’s position 

𝑞: Rochelle works hard. 

𝑟: Rochelle gets a raise 

𝑠: Rochelle buys a new car 

𝑝 ∧ 𝑞 → 𝑟 

𝑟 → 𝑠 

¬𝑠 

−−−−−− − 

∴ ¬𝑝 ∨ ¬𝑞 

1) ¬𝑠 

2) 𝑟 → 𝑠 

3) ¬𝑟 

4) 𝑝 ∧ 𝑞 → 𝑟 

5) ¬ 𝑝 ∧ 𝑞  

6) ∴ ¬𝑝 ∨ ¬𝑞 

1) Premise 

2) Premise 

3) Steps (1), (2) and Modus Tollens 

4) Premise 

5) Steps (3), (4) and Modus Tollens 

6) Step (5) and¬ 𝑝 ∧ 𝑞 ↔ ¬𝑝 ∨ ¬𝑞 

Ex 2.3: (12.a) 



𝑝: Dominic goes to the racetrack. 

𝑞: Helen gets mad. 

𝑟: Ralph plays cards all night. 

𝑠: Carmela gets mad. 

𝑡: Veronica is notified. 

𝑝 → 𝑞 

𝑟 → 𝑠 

𝑞 ∨ 𝑠 → 𝑡 

¬𝑡 

−−−−−− − 

∴ ¬𝑝 ∧ ¬𝑟 

1) ¬𝑡 

2) (𝑞 ∨ 𝑠) → 𝑡 

3) ¬ 𝑞 ∨ 𝑠  

4) ¬𝑞 ∧ ¬𝑠 

5) ¬𝑞 

6) 𝑝 → 𝑞 

7) ¬𝑝 

8) ¬𝑠 

9) 𝑟 → 𝑠 

10)¬𝑟 

11)∴ ¬𝑝 ∧ ¬𝑟 

1) Premise 

2) Premise 

3) Steps (1), (2) and Modus Tollens 

4) Step (3) and¬ 𝑞 ∨ 𝑠 ↔ ¬𝑞 ∧ ¬𝑠 

5) Step (4) and the Rule of Conjunctive Simplification 

6) Premise 

7) Steps (5), (6) and Modus Tollens 

8) Step (4) and the Rule of Conjunctive Simplification 

9) Premise 

10) Steps (8), (9) and Modus Tollens 

11) Steps (7), (10) and the Rule of Conjunction 

Ex 2.3: (12.b) 



𝑝: There is a chance of rain. 

𝑞: Lois’ red head scarf is missing. 

𝑟: Lois does not mow her lawn. 

𝑠: The temperature is over 80o F. 

𝑝 ∨ 𝑞 → 𝑟 

s → ¬p 

𝑠 ∧ ¬q 

−−−−−− − 

∴ ¬r 

The following truth value assignments  

provide a counterexample to the validity of this argument:  
𝑝: 0; 𝑞: 0; 𝑟: 1; 𝑠: 1 

Ex 2.3: (12.c) 



 True: a, c, e 

 False: b, d, f 

Ex 2.4: (3) 



 True: a, b, d 

 False: c, e, f 

Ex 2.4: (6) 



a) True 

b) False: For x = 1, q(x) is true while p(x) is false. 

c) True 

d) True 

e) True 

f) True 

g) True 

h) False: For x = -1, 𝑝(x) ∨ 𝑞(x)  is true but r(x) is false. 

Ex 2.4: (8) 



Statement For all positive integers m, n,  

if m > n then m2 > n2. 

True 

Converse For all positive integers m, n,  

if m2 > n2 then m > n. 

True 

 

Inverse For all positive integers m, n,  

if m ≤ n then m2 ≤ n2. 

True 

 

Contrapositive For all positive integers m, n,  

if m2 ≤ n2 then m ≤ n. 

True 

 

Ex 2.4: (19.a) 



Statement For all integers a, b,  

if a > b then a2 > b2. 

False: 

Let a = 1 and b = -2 

Converse For all integers a, b,  

if a2 > b2 then a > b. 

False: 

Let a = -5 and b = 3 

Inverse For all integers a, b,  

if a ≤ b then a2 ≤ b2. 

False: 

Let a = -5 and b = 3 

Contrapositive For all integers a, b,  

if a2 ≤ b2 then a ≤ b. 

False: 

Let a = 1 and b = -2 

Ex 2.4: (19.b) 



Statement For all integers m, n, and p, if m divides n and n 

divides p, then m divides p. 

True 

Converse For all integers m and p, if m divides p, then for 

each integer n it follows that m divides n and n 

divides p. 

False: 

Let m = 1,  

n = 2, and p = 3 

Inverse For all integers m, n, and p, if m does not divide n 

or n does not divide p, then m does not divide p. 

False: 

Let m = 1,  

n = 2, and p = 3 

Contrapositive For all integers m, n, and p, if m does not divide p 

then for each integer n it follows that m does not 

divide n or n does not divide p. 

True 

 

Ex 2.4: (19.c) 



Statement ∀𝑥[(𝑥 > 3) → (𝑥2 > 9)] True 

Converse ∀𝑥[ (𝑥2 > 9)] → (𝑥 > 3)] False: Let x = -5 

Inverse ∀𝑥[(𝑥 ≤ 3) → (𝑥2 ≤ 9)] False: Let x = -5 

Contrapositive ∀𝑥[ (𝑥2 ≤ 9)] → (𝑥 ≤ 3)] True 

Ex 2.4: (19.d) 



Statement ∀𝑥[ 𝑥2 + 4𝑥 − 21 > 0  
→ 𝑥 > 3 ∨ (𝑥 < −7) ] 

True 

Converse ∀𝑥[ 𝑥 > 3 ∨ 𝑥 < −7  
→ 𝑥2 + 4𝑥 − 21 > 0 ] 

True 

Inverse ∀𝑥[ 𝑥2 + 4𝑥 − 21 ≤ 0  
→ (−7 ≤ 𝑥 ≤ 3)] 

True 

Contrapositive ∀𝑥[(−7 ≤ 𝑥 ≤ 3) 
→ 𝑥2 + 4𝑥 − 21 ≤ 0 ] 

True 

Ex 2.4: (19.e) 



 When the statement ∃𝑥[𝑝 𝑥 ∨ 𝑞 𝑥 ] is true, there is at least 

one element c in the prescribed universe where p 𝑐 ∨ 𝑞(𝑐) is 

true. Hence at least one statements p 𝑐 , 𝑞(𝑐) has the truth 

value 1, so at least one of the statement ∃𝑥 𝑝 𝑥  and ∃𝑥 𝑞 𝑥  

is true. Therefore, it follows that ∃𝑥 𝑝 𝑥 ∨ ∃𝑥 𝑞 𝑥  is true, 

and ∃𝑥 𝑝 𝑥 ∨ 𝑞 𝑥 → ∃𝑥 𝑝(𝑥) ∨ ∃𝑥 𝑞(𝑥). Conversely, if 

∃𝑥 𝑝(𝑥) ∨ ∃𝑥 𝑞(𝑥) is true, then at least one of 𝑝(𝑎), q(𝑎) has 

truth value 1, for some a, b in the prescribed universe. 

Assume without loss of generality that it is 𝑝(𝑎). Then 

𝑝(𝑎) ∨ 𝑞(𝑎) has truth value 1 so ∃𝑥 𝑝 𝑥 ∨ 𝑞 𝑥  is a true 

statement, and ∃𝑥 𝑝(𝑥) ∨ ∃𝑥 𝑞(𝑥) → ∃𝑥 𝑝 𝑥 ∨ 𝑞 𝑥  

Ex 2.5: (7.a) 



 First consider when the statement ∀𝑥[𝑝 𝑥 ∧ 𝑞 𝑥 ] is true. 
This occurs when 𝑝 𝑎 ∧ 𝑞 𝑎  is true for each 𝑎 in the 
prescribed universe. Then 𝑝 𝑎  is true (as is 𝑞 𝑎 ) for all 𝑎 in 
the universe, so the statements ∀𝑥 𝑝 𝑥 , ∀𝑥 𝑞 𝑥  are true. 
Therefore, the statement ∀𝑥 𝑝 𝑥 ∧ ∀𝑥 𝑞 𝑥  is true and 
∀𝑥[𝑝 𝑥 ∧ 𝑞 𝑥 ] → ∀𝑥 𝑝 𝑥 ∧ ∀𝑥 𝑞 𝑥 . Conversely, suppose 
that ∀𝑥 𝑝 𝑥 ∧ ∀𝑥 𝑞 𝑥  is a true statement. Then ∀𝑥 𝑝 𝑥 ,
∀𝑥 𝑞 𝑥  are both true. So now let 𝑐 be any element in the 
prescribed universe. Then p c ,  𝑞 𝑐 , and p c ∧ q c  are all 
true. And, since 𝑐 was chosen arbitrarily, it follows that the 
statement ∀𝑥[𝑝 𝑥 ∧ 𝑞 𝑥 ] is true, and ∀𝑥 𝑝 𝑥 ∧ ∀𝑥 𝑞 𝑥 →
∀𝑥[𝑝 𝑥 ∧ 𝑞 𝑥 ]. 

 

Ex 2.5: (7.b) 



 This result is not true, in general. For example, 

𝑚 = 4 = 22 and n = 1 = 12 are two positive integers 

that are perfect squares, but m + n = 22 + 12 = 5 is not 

a perfect square. 

Ex 2.5: (19) 



 Proof: 

We shall prove the given result by establishing the truth 

of its (logically equivalent) contrapositive. 

Let us consider the negation of the conclusion --- that is, 

x < 50 and y < 50. Then with x < 50 and y < 50 it 

follows that x + y < 50 + 50 = 100, and we have the 

negation of the hypothesis. The given result now follows 

by this indirect method of proof (by the contrapositive). 

Ex 2.5: (21) 



 Proof: 

If n is even, then n = 2k for some (particular) integer k. 

Then 31n + 12 = 31(2k) + 12 = 2(31k + 6), so it follows 

from Definition 2.8 that 31n + 12 is even. 

Conversely, suppose that n is not even. Then n is odd, so 

n = 2t + 1 for some (particular) integer t. Therefore, 31n 

+ 12 = 31(2t + 1) + 12 = 2(31t + 21) + 1, so from 

Definition 2.8 we have 31n + 12 odd --- hence, not even. 

Consequently, the converse follows by contraposition. 

Ex 2.5: (24) 


