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eS(n):yr 2t =2n—1

®S5(1):Y;_ 27t =211 =21 — 1,50 5(1) is true.

® Assume S(k): Y% 2t71 = 2k — 1 is true,

® Consider S(k + 1).

yhtloiz1 = yk i=14 ok = gk _ 1 4 2k = pk+1 _q,
s0 S(k) = S(k + 1) and the result is true for all n € Z*
by the Principle of Mathematical Induction.




\

OS(n): Y, i2t=2=2+(n—1)2""
0S5(1):Y},i2t=2=2+(1—-1)21 s0S(1) is true.
® Assume S(k): Y% i2t = 2+ (k — 1)2%*1 is true.
® Consider S(k + 1).

frligt =% 20+ (k+ 12K 1=2 + (k — 1)2F+1 +
(k + 1)2"+1 2+ (2k)2F* = 2 + (k)2k+2,

s0 S(k) = S(k + 1) and the result is true forall n € Z*
by the Principle of Mathematical Induction.



\

®SM):Xie, (DN =+ 1! -1

OS(1): Y, (MHEN =1=({1+1)—1,s0S5(1) is true.
® Assume S(k): 35 (D@D = (k + 1)! — 1 is true.

® Consider S(k + 1).

YO =X Q@) + (k+ Dk + D= (k+ 1) -
1+k+Dk+D)!'=((k+2)! -1,

s0 S(k) = S(k + 1) and the result is true forall n € Z*
by the Principle of Mathematical Induction.



‘\

Here we have

no (n)(n+1)(2n+1) (2n)(2n+1) m -
i= 1l p > = i

nd (n)(n+1)(2n+1) _ (2n)(2n+1)




Ex 4.1(16.a & 16.b)

) s,=2;s,=4



o

1
Forn=1,sn= Z@-'FAQXTlp_ =n.

A

Proof: Forn =1,s, = % = 1, so this first case is true and establishes the basis

step. Now, for the inductive step, assume the result true forn =k(=1). Thatis,

1 - -
Skl = Dp#ACKpy m— Z@chxk ) + Dk 1)CCCX g 2 where the first sum is

taken over all nonempty subsets B of X . and the second sum over all subsets C
1

of X, ., that contain k + 1.
Then si 1 = sp + [k+1 Y sk] k + 1t k+1k = k + 1. Consequently,

we have deduced the truth forn = k + 1 from that of n = k. The result
follows for all n >= 1 by the Principle of Mathematical Induction.
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Assume S(k) true for some k > 1.
(k?+k)+%+2k+2

k+-|?
For S(k + 1), Y54t _[ +2] +k+1)= -

|(k+1) +2(k+1)+ 2 |G+ : ] S0 S(k) = S(k+ 1)

However, we have no first value of k where S(k) Is true.

1+=|?
Foreachk > 1,3/, i (k)(§+1) nd (1)(;“) = | 22] =1+ 3.




Ex 4.1(26.2 & 26.b)
\

a) a; = Zilg()l(?)aia(l—l)—i = (8)“0“0 = ay*
ay = Yi%0 () aiae-1-i = (p)aoar + (1)a1a0 = 2a0°.
n) az = Z§;()1(3;1)aia(3_1)_i = Z§=0(§)aia2_i =
(5)aoaz + (Daras + (5)azao = (ag)(2ao®) +
2(ap*)(ap*) + (2a¢°)(ay) = 6ay*
s = Z?;()l(4;1)aia(4—1)—i - Z?=0(§)aia3—i =
(g)aoag + (i)alaz + (g)azal + (g)asao —

(ag)(6ap?) + 3(ap*)(2a0°) + 3(2a¢>)(ap?) +
(6ay*)(ap) = 24a,°



——

Forn > 0,a, = (nDal*?.

Proof: (By the Alternative Form of the Principle of Mathematical Induction)

The result is true for n = 0 and this establishes the basis step. [In fact, the

calculations in parts (a) and (b) show the result is also true forn = 1, 2 3

and 4.1 Assuming the result true forn = 0,1,2,3, ..., k(= 0) — that Is, ‘that
= (n')a i forn = 0,1, 2 3,. k(> 0) — we find that

ak+1 = (k) A;iAy— l = (k) (l')(a”l)(k 0)! (ao l+1) =
)(l')(k l)'ao T2 = Zl Ok'a0+2 = (k+ D|k!af*?| =

(k + 1)' ak+

So the truth of the result forn = 0,1,2, ..., k(= 0) implies the truth of the

result forn = k + 1. Consequently, foralln > 0,a, = (n)al*! by the
Alternative Form of the Principle of Mathematical Inductlon






Ex 4.2(8.a)

‘\

1) Forn = 2,x; + x, denotes the ordinary sum of the real
numbers x; and x,.

2) For real number x4, x5, ..., X,,, X, 41, We have
Xp+x, + o+ x,+x01 = Fx0+ 0+ X)) + X001,
the sum of the two real number x; + x, + -+ + x,, and x,,¢



Ex 4.2(8.b)
.’

The truth of this result for n = 3 follows from the Associative Law of
Addition —since x; + (x; + x3) = (x1 + x3) + x3, there Is no ambiguity in
writing x; + x, + x3 . Assuming the result true for all k > 3 and all
1 < r <k, let us examine the case for k + 1 real numbers. We find that
1) r = kwehave (x; +x, + -+ x.) +x09= Xy + x5+ -+ x, +

X,4+1 DY Vvirtue of the recursive definition.
2) For1l <r < kwehave

(X +x2 + %) + (X + o+ X + Xpiq)

(1 + x5 + o+ 2) + [(0pgq + oo+ 2) + X 44]
[(xq + x5 + -+ x0) + (g + o0+ X)) ]+ Xpeis
(X1 +xo+ -+ x +Xp31+ -+ X5) + Xpqq
X1 +Xo +o X+ Xy + o+ X+ Xpegq-
So the result is true for alln = 3 and all 1 < r < n, by the Principle of
Mathematical Induction.




\

The result is true for n = 2 by the material presented at the
start of the problem. Assuming the truth for n = k real
numbers, we have, for

n==k|x;+x,+ - +xp+ Xpp1| =

(x1Fxg + o0 4 X)) + Xpeqq | <

x1+ x5+ x| F ] S

X1| + [x2] e x| + [Xpal,

so the result is true for all n = 2 by the Principle of
Mathematical Induction.




o

Proof: (By Mathematical Induction)

We find that Fy = YP_,F; =0 =1—1 = F, — 1, so the given statement
holds in this first case — and this provides the basis step of the proof.

For the induction step we assume the truth of the statement when
n=k(=0)—thatis,that X5  F; = Fy, — 1.

Now we consider what happens when n = k + 1. We find for this case
that X105 F; = (Zélo Fi) + Fiy1 = (Fiq2 + Frpq) — 1 = Fy3 — 1, s0 the
truth of the statement at n = k implies the truthatn = k + 1.
Consequently, >.i* o F; = F,4, — 1 for all n € N — by the Principle of
Mathematical Induction.
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a) Let E denote the set of all positive even integers.
We define E recursively by

1) 2 €E;and
2) ForeachneE,n+ 2 €E.

b) If G denotes the set of all nonnegative even integers.
We define G recursively by
1) 0€G;and
2) Foreachme G,m+ 2 €QG.



‘\

a) (a,b,c)=(152)or =(553) ..
b) Proof:
31|/(5a + 7b + 11c) = 31|(10a + 14b + 22c).

Also, 31|(31a + 31b + 31¢),
so 31|[(31a + 31b + 31c) — (10a + 14b + 22c¢)].
Hence 31|(21a + 17b + 9c¢).



(a)
(b)
(c)
(d)

‘\

Base 10
22
527

1234
6923

Base 2
10110
1000001111
10011010010
1101100001011

Base 16
16
20F
4D2
1BOB



00001111
11110001
01100100
At Right

01111111
10000000

\

(d)

Start with the binary representation of 65

Interchanges the 0’s and 1’s to obtain the
one’s complement

Add 1 to the one’s complement

65

!
01000001

|
10111110

l
10111111
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(c)

(a) 0101
+0001
0110

(b) 1101

+1110 =

1011

5

0111

+1000 =

1111
1101
+1010
0111

=7

=—1
= -3
= —6
+ —9 overflow error



———

Proof: Let Y = {3k|k € Z*}, the set of all positive integers divisible by 3.
In order to show that X = Y we shall verifythat X C Y andY C X.

(1) (X € Y): By part (1) of the recursive definition of X we have 3 in X.
And since 3 = 3 -1, it follows that 3 is in Y. Turning to part (2) of this
recursive definition suppose that for x, y € X we also have x,y € Y. Now
x + y € X by the definition and we need to show that x + y € Y. This
follows because x,y €Y = x = 3m,y = 3nforsomem,n € Z* = x +
y=3m+3n=3(m+n),withm+ne€Z"=x+y €Y. Therefore
every positive integer that results from either part (1) or part (2) of the
recursive definition of X is an element in Y, and, consequently, X C Y.



———

(i1) (Y < X): In order to establish this inclusion we need to show that every
positiveinteger multiple of 3 is in X. This will be accomplished by the Principle of
Mathematical Induction.

Start with the open statement
S(n): 3nisanelementin X,

which is defined for the universe Z*. The basis step — that is, S(1) — is true because
3-1 = 3isin X by part (1) of the recursive definition of X.

For the inductive step of this proof we assume the truth of S(k) for some k(= 1) and
consider what happens at n = k + 1. From the inductive hypothesis S(k) we know
that 3k is in X. Then from part (2) of the recursive definition of X we find that

3(k+ 1) =3k + 3 € Xbecause 3k,3 € X. Hence S(k) = S(k + 1).

So by the Principle of Mathematical Induction it follows that S(n) is true for all
n € Z* —and, consequently, Y € X. WithX c Yand Y € X it follows that X = Y.



\

a) 1820 =7(231) + 203
231 =1(203) + 28
203 =7(28) +7
28 = 7(4), so gcd(1820,231) =7
7 =203 -7(28) =203 -7[231- 203] = (-7)(231) + 8(203)
= (-7)(231) + 8[1820 -7(231)] = 8(1820) + (-63)(231)
b) gcd(1369,2597) =1 =2597(534) + 1369(-1013)
c) gcd(2689,4001) =1 =4001(-1117) + 2689(1662)
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If as+bt= 2, then gcd(a,b) =1 or 2, for the gcd of a,b
divides a,b so it divides as+bt=2.

as+bt=3 = gcd(a,b)=1 or 3.
as+bt=4 = gcd(a,b)=1,2 or 4.
as+bt=6 = gcd(a,b)=1,2,3 or 6.
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+ Let gcd(a,b) = h,gcd(b,d) = g.
gcd(a,b) = h
= hla, h|b
= h|(a-1+ bc) = hld.

* h|b,h|d = h|g.

« ged(b,d) = g = glb, gld
= g|(d -1+ b(—c))
= gla.

* g|b, gla,h = gcd(a,b) = g|h.

« hlg,g|lh,withg,h €Zt* > g=nh



\

* 33x + 29y = 2490
gcd(33,29) =1,and 33 =1(29) + 4,29 =7(4) + 1,501
=29 — 7(4) = 29 — 7(33 — 29) = 8(29) — 7(33).1
= 33(=7) + 29(8) = 2490 = 33(—17430) + 29(19920)
= 33(—17430 + 26k) + 29(19920 — 33k), for all k € Z.

* x = —17430 + 29k,y = 19920 — 33k
x=0=29k >17430 > k = 602
y=0= 19920 >33k = 603 >k

* k=602:x =28,y =54; k=603:x =57,y =21



‘\

* From Theorem 4.10 we know that
ab = lcm(a, b) - gcd(a, b).

« Consequently,
llem(a, b) - ged(a, b)]  (242,550)(105)

a 630




e —

a) 22.3%3.53.11
h) 2%.3.52.72.112
c) 32.53.72.11-13



\

gcd(148500,7114800) = 22 %31 %52 %111 = 3300
lcm(148500,7114800) = 2* % 33% 53% 72x 11%= 320166000
gcd(148500,7882875) = 32 %53 %111 = 12375
lcm(148500,7882875) = 22 x 33x 53 % 7%x 11'x 13! = 94594500
gcd(7114800,7882875) = 31 %52 % 72 x 111 = 40425
lcm(7114800,7882875) = 2% x 32 % 53 x 72 x 114 131

= 1387386000



a)

b)

—

There are (15)(10)(9)(11)(4)(6)(11)=3920400 positive
divisors of n = 214395871011313°53719,

(i) (14-3+1)(9-4+1)(8-7+1)(10-0+1)(3-2+1)(5-0+1)(10-
2+1)=(12)(6)(2)(11)(2)(6)(9)=171072

(ii) Since 1166400000=2°3%5°, the number of divisors
here is (14-9+1)(9-6+1)(8-5+1)(10-0+1)(3-0+1)(5-
0+1)(10-0+1)=(6)(4)(4)(11)(4)(6)(11)=278784
(11)(8)(5)(5)(6)(2)(3)(6)=43200
(Iv)(7)(3)(4)(6)(1)(3)(6)=9072

(V) (5)(4)(3)(4)(2)(2)(4)=3840
(vi)(1)(1)(2)(2)(1)(1)(3)=12
(viN)(3)(2)(2)(2)(1)(1)(2)=48



=% +0)

[Ti= (1 + %71



\

Proof: (By mathematical Induction)
—, SO

Forn—ZweflndthatH _,(1— 2)—(1——) (1—‘) 2 2.2

the result is true in this first case and this establishes the basis step for our
inductive proof.

Next we assume the result true for some (particular) k € Z* where k > 2.

3 241

This gives us [T¥,(1 — 2) = % When we consider the case forn = k + 1,
using the inductive step, ‘we find that

k+1(4 1Y _ k 1 1 _ k+2  (k+1)+1

L=2 (1 iz) B ( 1=2 (1 iz)) (1 (k+1)2) T 2(k+1)  2(k+1)

The result now follows for all positive integers n = 2 by the Principle of
Mathematical Induction.
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