Solution

Ex 4.1: 2, 8, 16, 19, 26 Ex 4.2: 1, 8, 10, 12, 16 Ex 4.3: 7, 15, 20, 22, 28 Ex 4.4: 1, 2, 7, 14, 19 Ex 4.5: 1, 2, 8, 24, 25

Ex 4.1: (2.a)

 $\bullet S(n): \sum_{i=1}^{n} 2^{i-1} = 2^{n} - 1$ • $S(1): \sum_{i=1}^{1} 2^{i-1} = 2^{1-1} = 2^1 - 1$, so $S(1)$ is true. • Assume $S(k)$: $\sum_{i=1}^{k} 2^{i-1} = 2^{k} - 1$ is true. • Consider $S(k + 1)$. $\sum_{i=1}^{k+1} 2^{i-1} = \sum_{i=1}^{k} 2^{i-1} + 2^k = 2^k - 1 + 2^k = 2^{k+1} - 1,$ so $S(k) \implies S(k + 1)$ and the result is true for all $n \in \mathbb{Z}^+$ by the Principle of Mathematical Induction.

Ex 4.1: (2.b)

 $\bullet S(n): \sum_{i=1}^{n} i2^{i} = 2 = 2 + (n-1)2^{n+1}$ $\bullet S(1): \sum_{i=1}^{1} i2^{i} = 2 = 2 + (1 - 1)2^{1+1}$, so $S(1)$ is true. • Assume $S(k): \sum_{i=1}^{k} i2^{i} = 2 + (k-1)2^{k+1}$ is true. • Consider $S(k + 1)$. $\sum_{i=1}^{k+1} i2^i = \sum_{i=1}^k i2^i + (k+1)2^{k+1} =$ $_{i=1}^{k+1} i2^i = \sum_{i=1}^k i2^i + (k+1)2^{k+1} = 2 + (k-1)2^{k+1} +$ $(k + 1)2^{k+1} = 2 + (2k)2^{k+1} = 2 + (k)2^{k+2},$ so $S(k) \implies S(k + 1)$ and the result is true for all $n \in \mathbb{Z}^+$ by the Principle of Mathematical Induction.

Ex 4.1: (2.c)

- $\bullet S(n): \sum_{i=1}^{n} (i)(i!) = (n+1)! 1$
- $\bullet S(1): \sum_{i=1}^{1} (i)(i!) = 1 = (1 + 1)! 1$, so $S(1)$ is true.
- Assume $S(k)$: $\sum_{i=1}^{k} (i)(i!) = (k + 1)! 1$ is true.
- Consider $S(k + 1)$.

 $\sum_{i=1}^{k+1}(i)(i!) = \sum_{i=1}^{k}(i)(i!) + (k+1)(k+1)!$ $_{i=1}^{k+1}(i)(i!) = \sum_{i=1}^{k}(i)(i!) + (k+1)(k+1)! = (k+1)! 1 + (k + 1)(k + 1)! = (k + 2)! - 1,$

so $S(k) \implies S(k + 1)$ and the result is true for all $n \in \mathbb{Z}^+$ by the Principle of Mathematical Induction.

$Ex 4.1: (8)$

Here we have $\sum_{i=1}^{n} i^2 = \frac{(n)(n+1)(2n+1)}{6} = \frac{(2n)(2n+1)}{2} = \sum_{i=1}^{2n} i,$
and $\frac{(n)(n+1)(2n+1)}{6} = \frac{(2n)(2n+1)}{2} \implies n = 5.$

Ex 4.1(16.a & 16.b)

a) 3 b) $s_2 = 2$; $s_4 = 4$

Ex 4.1(16.c)

For
$$
n \ge 1
$$
, $sn = \sum_{\emptyset \ne A \subseteq X} \frac{1}{p_A} = n$.

Proof: For $n=1$, $s_1=\frac{1}{1}$ 1 $= 1$, so this first case is true and establishes the basis step. Now, for the inductive step, assume the result true for $n = k (\ge 1)$. That is, $s_{k+1} = \sum_{\emptyset \neq A \subseteq X_{k+1}} \frac{1}{p}$ $p_{A}^{}$ $\varphi \neq A \subseteq X_{k+1}$ $\frac{1}{p_A} = \sum_{\emptyset \neq B \subseteq X_k} \frac{1}{p_B} + \sum_{\{k+1\} \subseteq C \subseteq X_{k+1}} \frac{1}{p_C}$, where the first sum is taken over all nonempty subsets B of X_k and the second sum over all subsets C of X_{k+1} that contain $k + 1$. Then $s_{k+1} = s_k + \frac{1}{k+1}$ $+\frac{1}{k+1}$ $\left[\frac{1}{k+1} s_k\right] = k + \frac{1}{k+1}$ $+\frac{1}{k+1}$ $k+1$ $k = k + 1$. Consequently,

we have deduced the truth for $n = k + 1$ from that of $n = k$. The result follows for all $n \geq 1$ by the Principle of Mathematical Induction.

Ex 4.1(19)

Assume $S(k)$ true for some $k \geq 1$. For $S(k + 1)$, $\sum_{i=1}^{k+1} i =$ $k+\frac{1}{2}$ 2 2 2 $+ (k + 1) =$ $\frac{k^2+k}{4}+2k+2$ = $(k+1)^2 + (k+1) + \frac{1}{4}$ 2 = $k+1)+\frac{1}{2}$ 2 2
.. . So $S(k) \Rightarrow S(k + 1)$. However, we have no first value of k where $S(k)$ is true. For each $k \geq 1, \sum_{i=1}^{k} i =$ k)($k+1$ 2 and $\frac{(1)(1+1)}{2}$ 2 = $1+\frac{1}{2}$ 2 2 $\Rightarrow 1 \neq \frac{9}{8}$ 8 .

Ex 4.1(26.a & 26.b)

a)
$$
a_1 = \sum_{i=0}^{1-1} {0 \choose i} a_i a_{(1-1)-i} = {0 \choose 0} a_0 a_0 = a_0^2
$$

\n $a_2 = \sum_{i=0}^{2-1} {1 \choose i} a_i a_{(2-1)-i} = {1 \choose 0} a_0 a_1 + {1 \choose 1} a_1 a_0 = 2a_0^3$.
\nb) $a_3 = \sum_{i=0}^{3-1} {3-1 \choose i} a_i a_{(3-1)-i} = \sum_{i=0}^{2} {2 \choose i} a_i a_{2-i} = {2 \choose 0} a_0 a_2 + {2 \choose 1} a_1 a_1 + {2 \choose 2} a_2 a_0 = (a_0) (2a_0^3) + 2(a_0^2) (a_0^2) + (2a_0^3) (a_0) = 6a_0^4$
\n $a_4 = \sum_{i=0}^{4-1} {4-1 \choose i} a_i a_{(4-1)-i} = \sum_{i=0}^{3} {3 \choose i} a_i a_{3-i} = {3 \choose 0} a_0 a_3 + {3 \choose 1} a_1 a_2 + {3 \choose 2} a_2 a_1 + {3 \choose 3} a_3 a_0 = (a_0) (6a_0^4) + 3(a_0^2) (2a_0^3) + 3(2a_0^3) (a_0^2) + (6a_0^4) (a_0) = 24a_0^5$

Ex 4.1(26.c)

For $n \geq 0$, $a_n = (n!) a_0^{n+1}$.

Proof: (By the Alternative Form of the Principle of Mathematical Induction) The result is true for $n = 0$ and this establishes the basis step. [In fact, the calculations in parts (a) and (b) show the result is also true for $n = 1,2,3$ and 4.] Assuming the result true for $n = 0,1,2,3,...$, $k(\ge 0)$ – that is, that $a_n = (n!) a_0^{n+1}$ for $n = 0,1,2,3,..., k (\ge 0)$ – we find that

 $a_{k+1} = \sum_{i=0}^{k} {k \choose i}$ $_{i=0}^{k}\binom{k}{i}a_{i}a_{k-i} = \sum_{i=0}^{k}\binom{k}{i}$ $\binom{k}{i}$ $\binom{k}{i}$ $\binom{n!}{0}$ $\binom{n^{i+1}}{0}$ $\binom{k-i}{1}$ $\binom{n^{k-i+1}}{0}$ $\sum_{i=0}^{k} {k \choose i} (i!) (k-i)! a_0^{k+2} = \sum_{i=0}^{k} k! a_0^{k+2} = (k+1) [k! a_0^{k+2}] =$ ι $(k + 1)! a_0^{k+2}.$

So the truth of the result for $n = 0,1,2,..., k(\ge 0)$ implies the truth of the result for $n = k + 1$. Consequently, for all $n \ge 0$, $a_n = (n!) a_0^{n+1}$ by the Alternative Form of the Principle of Mathematical Induction.

$Ex 4.2(1)$

\n- a)
$$
c_1 = 7
$$
; and $c_{n+1} = c_n + 7$, for $n \ge 1$.
\n- b) $c_1 = 7$; and $c_{n+1} = 7c_n$, for $n \ge 1$.
\n- c) $c_1 = 10$; and $c_{n+1} = c_n + 3$, for $n \ge 1$.
\n- d) $c_1 = 7$; and $c_{n+1} = c_n$, for $n \ge 1$.
\n- e) $c_1 = 1$; and $c_{n+1} = c_n + 2n + 1$, for $n \ge 1$.
\n- f) $c_1 = 3$, $c_2 = 1$; and $c_{n+2} = c_n$, for $n \ge 1$.
\n

Ex 4.2(8.a)

- 1) For $n = 2$, $x_1 + x_2$ denotes the ordinary sum of the real numbers x_1 and x_2 .
- 2) For real number $x_1, x_2, ..., x_n, x_{n+1}$, we have $x_1 + x_2 + \cdots + x_n + x_{n+1} = (x_1 + x_2 + \cdots + x_n) + x_{n+1}$ the sum of the two real number $x_1 + x_2 + \cdots + x_n$ and x_{n+1}

Ex 4.2(8.b)

The truth of this result for $n = 3$ follows from the Associative Law of Addition – since $x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$, there is no ambiguity in writing $x_1 + x_2 + x_3$. Assuming the result true for all $k \ge 3$ and all $1 \le r \le k$, let us examine the case for $k + 1$ real numbers. We find that

- 1) $r = k$ we have $(x_1 + x_2 + \cdots + x_r) + x_{r+1} = x_1 + x_2 + \cdots + x_r +$ x_{r+1} by virtue of the recursive definition.
- 2) For $1 \le r \le k$ we have

 $(x_1 + x_2 + \cdots + x_r) + (x_{r+1} + \cdots + x_k + x_{k+1})$ $= (x_1 + x_2 + \cdots + x_r) + [(x_{r+1} + \cdots + x_k) + x_{k+1}]$ $= \left[(\bar{x}_1 + \bar{x}_2 + \cdots + \bar{x}_r) + (\bar{x}_{r+1} + \cdots + \bar{x}_k) \right] + \bar{x}_{k+1}$ $=$ $(x_1 + x_2 + \cdots + x_r + x_{r+1} + \cdots + x_k) + x_{k+1}$ $= x_1 + x_2 + \cdots + x_r + x_{r+1} + \cdots + x_k + x_{k+1}.$

So the result is true for all $n \geq 3$ and all $1 \leq r < n$, by the Principle of Mathematical Induction.

Ex 4.2(10)

The result is true for $n = 2$ by the material presented at the start of the problem. Assuming the truth for $n = k$ real numbers, we have, for

$$
n = k, |x_1 + x_2 + \dots + x_k + x_{x+1}| =
$$

$$
|(x_1 + x_2 + \dots + x_k) + x_{x+1}| \le
$$

$$
|x_1 + x_2 + \dots + x_k| + |x_{x+1}| \le
$$

$$
|x_1| + |x_2| + \dots + |x_k| + |x_{x+1}|,
$$

so the result is true for all $n \ge 2$ by the Principle of Mathematical Induction.

Ex 4.2(12)

Proof: (By Mathematical Induction)

We find that $F_0 = \sum_{i=0}^{0} F_i = 0 = 1 - 1 = F_2 - 1$, so the given statement holds in this first case $-$ and this provides the basis step of the proof. For the induction step we assume the truth of the statement when $n = k (\ge 0) - \text{that is, that } \sum_{i=0}^{k} F_i = F_{k+2} - 1.$

Now we consider what happens when $n = k + 1$. We find for this case that $\sum_{i=0}^{k+1} F_i = (\sum_{i=0}^{k} F_i) + F_{k+1} = (F_{k+2} + F_{k+1}) - 1 = F_{k+3} - 1$, so the truth of the statement at $n = k$ implies the truth at $n = k + 1$. Consequently, $\sum_{i=0}^{n} F_i = F_{n+2} - 1$ for all $n \in \mathbb{N}$ by the Principle of Mathematical Induction.

Ex 4.2(16)

- a) Let E denote the set of all positive even integers. We define E recursively by
	- 1) $2 \in E$; and
	- 2) For each $n \in E$, $n + 2 \in E$.
- b) If G denotes the set of all nonnegative even integers. We define G recursively by
	- 1) $0 \in G$; and
	- 2) For each $m \in G$, $m + 2 \in G$.

Ex 4.3(7)

a) $(a, b, c) = (1, 5, 2)$ or $= (5, 5, 3)$...

b) Proof:

 $31 | (5a + 7b + 11c) \Rightarrow 31 | (10a + 14b + 22c).$ Also, $31|(31a + 31b + 31c)$, so $31|[(31a + 31b + 31c) - (10a + 14b + 22c)].$ Hence $31|(21a + 17b + 9c)$.

Ex 4.3(15)

- a) 00001111
- b) 11110001
- c) 01100100
- d) At Right
- e) 01111111
- f) 10000000

Add 1 to the one's complement

- (a) $0101 = 5$ (c) $0111 = 7$
	- $+0001 = 1$ $+1000 = -8$
		- $0110 = 6$ 1111 = -1
- (b) $1101 = -3$ (d) $1101 = -3$
	- $+1110 = -2$ $+1010 = -6$
		- $1011 = -5$ 0111 $\neq -9$ overflow error

$\overline{\text{Ex }4.3(28)}_{1/2}$

Proof: Let $Y = \{3k | k \in \mathbb{Z}^+\}$, the set of all positive integers divisible by 3. In order to show that $X = Y$ we shall verify that $X \subseteq Y$ and $Y \subseteq X$. (i) $(X \subseteq Y)$: By part (1) of the recursive definition of X we have 3 in X. And since $3 = 3 \cdot 1$, it follows that 3 is in Y. Turning to part (2) of this recursive definition suppose that for $x, y \in X$ we also have $x, y \in Y$. Now $x + y \in X$ by the definition and we need to show that $x + y \in Y$. This follows because $x, y \in Y \Rightarrow x = 3m, y = 3n$ for some $m, n \in Z^+ \Rightarrow x +$ $y = 3m + 3n = 3(m + n)$, with $m + n \in \mathbb{Z}^+ \Rightarrow x + y \in \mathbb{Y}$. Therefore every positive integer that results from either part (1) or part (2) of the recursive definition of X is an element in Y, and, consequently, $X \subseteq Y$.

$\text{Ex } 4.3(28)_{2/2}$

(ii) $(Y \subseteq X)$: In order to establish this inclusion we need to show that every positive integer multiple of 3 is in X. This will be accomplished by the Principle of Mathematical Induction.

Start with the open statement

 $S(n)$: 3*n* is an element in X,

which is defined for the universe Z^+ . The basis step – that is, $S(1)$ – is true because $3 \cdot 1 = 3$ is in X by part (1) of the recursive definition of X.

For the inductive step of this proof we assume the truth of $S(k)$ for some $k(\geq 1)$ and consider what happens at $n = k + 1$. From the inductive hypothesis $S(k)$ we know that $3k$ is in X. Then from part (2) of the recursive definition of X we find that $3(k + 1) = 3k + 3 \in X$ because $3k, 3 \in X$. Hence $S(k) \Rightarrow S(k + 1)$.

So by the Principle of Mathematical Induction it follows that $S(n)$ is true for all $n \in \mathbb{Z}^+$ –and, consequently, $Y \subseteq X$. With $X \subseteq Y$ and $Y \subseteq X$ it follows that $X = Y$.

- $231 = 1(203) + 28$ $203 = 7(28) + 7$ $28 = 7(4)$, so gcd $(1820, 231) = 7$ $7 = 203 - 7(28) = 203 - 7[231 - 203] = (-7)(231) + 8(203)$ $= (-7)(231) + 8[1820 - 7(231)] = 8(1820) + (-63)(231)$ b) gcd(1369,2597) = 1 = 2597(534) + 1369(-1013) c) $\gcd(2689,4001) = 1 = 4001(-1117) + 2689(1662)$
- a) $1820 = 7(231) + 203$

- a) If as+bt= 2, then $gcd(a,b) = 1$ or 2, for the gcd of a,b divides a,b so it divides as+bt=2.
- b) as+bt=3 \Rightarrow gcd(a,b)=1 or 3.
- c) as+bt=4 \Rightarrow gcd(a,b)=1,2 or 4.
- d) as+bt= $6 \Rightarrow \text{gcd}(a,b)=1,2,3 \text{ or } 6$.

$$
Ex\ 4.4(7)
$$

* Let
$$
gcd(a, b) = h, gcd(b, d) = g
$$
.
\n
$$
gcd(a, b) = h
$$
\n
$$
\Rightarrow h|a, h|b
$$
\n
$$
\Rightarrow h|(a \cdot 1 + bc) \Rightarrow h|d.
$$

 $\star h | b, h | d \Rightarrow h | g.$ * $gcd(b, d) = g \Rightarrow g | b, g$ \Rightarrow g[($d \cdot 1 + b(-c)$) $\Rightarrow g|a.$ * $g|b, g|a, h = \gcd(a, b) \Rightarrow g|h.$ $∗ h|g, g|h, with g, h ∈ Z⁺ ⇒ g = h$

$\text{Ex } 4.4(14)$

 $*$ 33x + 29y = 2490 $gcd(33,29) = 1, and 33 = 1(29) + 4, 29 = 7(4) + 1, so 1$ $= 29 - 7(4) = 29 - 7(33 - 29) = 8(29) - 7(33).1$ $= 33(-7) + 29(8) \Rightarrow 2490 = 33(-17430) + 29(19920)$ $=$ 33(-17430 + 26k) + 29(19920 - 33k), for all $k \in \mathbb{Z}$. * $x = -17430 + 29k$, $y = 19920 - 33k$ $x \ge 0 \Rightarrow 29k \ge 17430 \Rightarrow k \ge 602$ $y \ge 0 \Rightarrow 19920 \ge 33k \Rightarrow 603 \ge k$ * $k = 602$: $x = 28$, $y = 54$; $k = 603$: $x = 57$, $y = 21$

Ex 4.4(19)

∗ From Theorem 4.10 we know that $ab = lcm(a, b) \cdot gcd(a, b).$

∗ Consequently, \boldsymbol{b} $(a, b) \cdot \gcd(a, b)$ \overline{a} = 242,550)(105 630

- a) $2^2 \cdot 3^3 \cdot 5^3 \cdot 11$
- b) $2^4 \cdot 3 \cdot 5^2 \cdot 7^2 \cdot 11^2$
- c) $3^2 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13$

 $gcd(148500,7114800) = 2^2 * 3^1 * 5^2 * 11^1 = 3300$ $lcm(148500,7114800) = 2⁴ * 3³ * 5³ * 7² * 11² = 320166000$ $gcd(148500,7882875) = 3^2 * 5^3 * 11^1 = 12375$ $lcm(148500,7882875) = 2^2 * 3^3 * 5^3 * 7^2 * 11^1 * 13^1 = 94594500$ $gcd(7114800, 7882875) = 3¹ * 5² * 7² * 11¹ = 40425$ $lcm(7114800,7882875) = 2⁴ * 3² * 5³ * 7² * 11² * 13¹$ $= 1387386000$

- a) There are $(15)(10)(9)(11)(4)(6)(11)=3920400$ positive divisors of $n = 2^{14}3^95^87^{10}11^313^537^{10}$.
- b) (i) $(14-3+1)(9-4+1)(8-7+1)(10-0+1)(3-2+1)(5-0+1)(10 2+1)=(12)(6)(2)(11)(2)(6)(9)=171072$ (ii) Since $1166400000=293655$, the number of divisors here is $(14-9+1)(9-6+1)(8-5+1)(10-0+1)(3-0+1)(5 0+1(10-0+1)=(6)(4)(4)(11)(4)(6)(11)=278784$ $(iii)(8)(5)(5)(6)(2)(3)(6)=43200$ $(iv)(7)(3)(4)(6)(1)(3)(6)=9072$ (v) $(5)(4)(3)(4)(2)(2)(4)=3840$ $(vi)(1)(1)(2)(2)(1)(1)(3)=12$ $(vii)(3)(2)(2)(2)(1)(1)(2)=48$

- a) $\prod_{i=1}^{5} (i^2 + i)$ b) $\prod_{i=1}^{5} (1 + x^{i})$
- c) $\prod_{i=1}^{6} (1 + x^{2i-1})$

Ex 4.5(25)

Proof: (By mathematical Induction)

For n = 2 we find that $\prod_{i=2}^{2} (1 - \frac{1}{i^2}) = (1 - \frac{1}{2^2}) = (1 - \frac{1}{4}) =$ 4 4 3 = $\frac{2+1}{2\cdot 2}$, so the result is true in this first case and this establishes the basis step for our inductive proof.

Next we assume the result true for some (particular) $k \in \mathbb{Z}^+$ where $k \geq 2$.

This gives us $\prod_{i=2}^{k} (1 - \frac{1}{i^2}) =$ $\frac{k+1}{2k}$. When we consider the case for $n = k + 1$, using the inductive step, we find that

$$
\prod_{i=2}^{k+1} \left(1 - \frac{1}{i^2}\right) = \left(\prod_{i=2}^{k} \left(1 - \frac{1}{i^2}\right)\right) \left(1 - \frac{1}{(k+1)^2}\right) = \frac{k+2}{2(k+1)} = \frac{(k+1)+1}{2(k+1)}.
$$

The result now follows for all positive integers $n \geq 2$ by the Principle of Mathematical Induction.