SOLUTION

Ex 8.1: 1, 6, 8, 16, 20

Ex 8.2: 2, 3, 8

Ex 8.3: 1, 4, 6, 9, 10

Ex 8.4 and Ex 8.5: 4, 5, 7, 8, 12

Ex 8.1: (1)

- Let $x \in S$ and let n be the number of conditions (from among c_1, c_2, c_3, c_4) satisfied by x. (n = 0): Here x is counted once in $N(\overline{c_2}\overline{c_3}\overline{c_4})$ and once in $N(\overline{c_1}\overline{c_2}\overline{c_3}\overline{c_4})$. (n = 1): If x satisfies c_1 (and not c_2, c_3, c_4), then x is counted once in $N(\overline{c_2}\overline{c_3}\overline{c_4})$ and once in $N(\overline{c_1}\overline{c_2}\overline{c_3}\overline{c_4})$
- If x satisfies c_i , for $i \neq 1$, then x is not counted in any of the three terms in the equation. (n = 2,3,4): If x satisfies at least two of the four conditions, then x is not counted in any of the three terms in the equation.
- The preceding observations show that the two sides of the given equation count the same elements from *S*, and this provides a combinational proof for the formula

$$N(\overline{c_2}\overline{c_3}\overline{c_4}) = N(c_1\overline{c_2}\overline{c_3}\overline{c_4}) + N(\overline{c_1}\overline{c_2}\overline{c_3}\overline{c_4})$$

Ex 8.1: (6a, 6b)

- $x_1 + x_2 + x_3 + x_4 = 19$
- a) $0 \le x_i$, $1 \le i \le 4$. $\binom{4+19-1}{19} = \binom{22}{19}$
- b) For $1 \le i \le 4$, let $c_i : x_i \ge 8$. $N(c_i) : x_1 + x_2 + x_3 + x_4 = 11 : \binom{4+11-1}{11} = \binom{14}{11}, 1 \le i \le 4$.

$$N(c_i c_j)$$
: $x_1 + x_2 + x_3 + x_4 = 3$: $\binom{4+3-1}{3} = \binom{14}{3}$, $1 \le i < j \le 4$.

$$N(\overline{c_1}\overline{c_2}\overline{c_3}\overline{c_4}) = N - S_1 + S_2 = \binom{22}{19} - 4\binom{14}{11} + 6\binom{6}{3}.$$

Ex 8.1: (6c)

• The number of solutions for $x_1 + x_2 + x_3 + x_4 = 19$ where $0 \le x_1 \le 5, 0 \le x_2 \le 6, 3 \le x_3 \le 7, 3 \le x_4 \le 8$ equals the number of solutions for $x_1 + x_2 + x_3 + x_4 = 13$ with $0 \le x_1 \le 5, 0 \le x_2 \le 5$ $6, 0 \le x_3 \le 4, 0 \le x_4 \le 5$. Define the conditions $c_i, 1 \le i \le 4$, as follows: $c_1: x_1 \ge 6$, $c_2: x_2 \ge 7$; $c_3: x_3 \ge 5$; $c_4: x_4 \ge 6$. $N = \binom{4+13-1}{12} = \binom{16}{12}$. $N(c_1), N(c_4): x_1 + x_2 + x_3 + x_4 = 7: {4+7-1 \choose 7} = {10 \choose 7}.$ $N(c_2): x_1 + x_2 + x_3 + x_4 = 6: {4+6-1 \choose 6} = {9 \choose 6}.$ $N(c_3): x_1 + x_2 + x_3 + x_4 = 8: {\binom{4+8-1}{9}} = {\binom{11}{9}}.$ $N(c_1c_2) = 1.$ $N(c_1c_3): x_1 + x_2 + x_3 + x_4 = 2: {4+2-1 \choose 2} = {5 \choose 2}.$ $N(c_1c_4): x_1 + x_2 + x_3 + x_4 = 1: {4+1-1 \choose 1} = {4 \choose 1}.$ $N(c_2c_3) = \binom{4}{1}, N(c_2c_4) = 1, N(c_3c_4) = \binom{5}{2}.5$ $N(\overline{c_1}\overline{c_2}\overline{c_3}\overline{c_4}) = \binom{16}{13} - \left[2\binom{10}{7} + \binom{9}{6} + \binom{11}{9}\right] + 2\left[1 + \binom{4}{1} + \binom{5}{2}\right].$

Ex 8.1: (8)

- The number of integer solutions for $x_1 + x_2 + x_3 + x_4 = 19$, $5 \le x_1 \le 10$, $1 \le i \le 4$, equals the number of integer solutions for $y_1 + y_2 + y_3 + y_4 = 39$, $0 \le y_i \le 15$.
- For $1 \le i \le 4$, let c_i : $y_i \ge 16$. $N(c_i), 1 \le i \le 4$: $y_1 + y_2 + y_3 + y_4 = 23$: $\binom{4+23-1}{23} = \binom{26}{23}$. $N(c_i c_j), 1 \le i < j \le 4$: $y_1 + y_2 + y_3 + y_4 = 7$: $\binom{4+7-1}{7} = \binom{10}{7}$. $N(\overline{c_1} \overline{c_2} \overline{c_3} \overline{c_4}) = \binom{42}{29} - 4\binom{26}{23} + 6\binom{10}{7}$.

Ex 8.1: (16)

•
$$10^9 - \binom{3}{1}9^9 + \binom{3}{2}8^9 - \binom{3}{3}7^9$$
.

Ex 8.1: (20)

• For $1 \le i \le 7$, let c_i denote the situation where the *i*-th friend was at lunch with Sharon.

Then
$$N(\bar{c_1}\bar{c_2}...\bar{c_7}) = 84 - \binom{7}{1}35 + \binom{7}{2}16 - \binom{7}{3}8 + \binom{7}{4}4 - \binom{7}{5}2 + \binom{7}{6}1 - \binom{7}{7}0 = 0$$
. Consequently, Sharon always had company at lunch.

Ex 8.2: (2)

a) Let c_i denote the condition that the two A's are together in an arrangement of ARRANGEMENT. Conditions c_2 , c_3 , c_4 are defined similarly for the two E's, N's, and R's, respectively.

$$N = \frac{(11!)}{[(2!)^4]} = 2494800.$$

For
$$1 \le i \le 4$$
, $N(c_i) = \frac{10!}{(2!)^3} = 453600$.

For
$$1 \le i < j \le 4$$
, $N(c_i c_j) = \frac{9!}{(2!)^2} = 90720$.

$$N(c_i c_j c_k) = \frac{8!}{2!} = 20160, 1 \le i < j < k \le 4.$$

$$N(c_1c_2c_3c_4) = 7! = 5040.$$

$$S_1 = {4 \choose 1} 453600 = 1814400. S_2 = {4 \choose 2} 90720 = 544320.$$

$$S_3 = {4 \choose 3}20160 = 80640. S_4 = {4 \choose 4}5040 = 5040.$$

(i)
$$E_2 = S_2 - {3 \choose 1}S_3 + {4 \choose 2}S_4 = 332640$$

(ii)
$$L_2 = S_2 - {3 \choose 1} S_3 + {3 \choose 1} S_4 = 398160$$

b) (i)
$$E_3 = S_3 - {4 \choose 1}S_4 = 60480$$
. (ii) $L_3 = S_3 - {3 \choose 2}S_4 = 65520$.

Ex 8.2: (3)

• Let c_1 denote the presence of consecutive E's in the arrangement. Likewise, c_2 , c_3 , c_4 , and c_5 are defined for consecutive N's, O's, R's, and S's, respectively.

a)
$$N = \frac{14!}{(2!)^5}$$

 $N(c_1) = \frac{13!}{(2!)^4}$; $S_1 = {5 \choose 1} \left(\frac{13!}{(2!)^4}\right)$.
 $N(c_1c_2) = \frac{12!}{(2!)^3}$; $S_2 = {5 \choose 2} \left(\frac{12!}{(2!)^3}\right)$.
 $N(c_1c_2c_3) = \frac{11!}{(2!)^2}$; $S_3 = {5 \choose 3} \left(\frac{11!}{(2!)^2}\right)$.
 $N(c_1c_2c_3c_4) = \frac{10!}{(2!)^3}$; $S_4 = {5 \choose 4} \left(\frac{10!}{(2!)^3}\right)$.
 $N(c_1c_2c_3c_4c_5) = 9! = S_5$.
 $N(\overline{c_1}\overline{c_2}\overline{c_3}\overline{c_4}\overline{c_5}) = 1,286,046,720$
b) $E_2 = S_2 - {3 \choose 1}S_3 + {4 \choose 2}S_4 - {5 \choose 3}S_5 = 350,179,200$
c) $L_3 = S_3 - {3 \choose 2}S_4 + {4 \choose 2}S_5 = 74,753,280$

Ex 8.2: (8)

- b) $E_{t-1} = S_{t-1} tS_t$; $L_{t-1} = L_t + E_{t-1}$
- c) $L_{t-1} = L_t + E_{t-1} = S_t + S_{t-1} tS_t = S_{t-1} (t-1)S_t = S_{t-1} {t-1 \choose t-2}S_t$
- $L_m = L_{m+1} + E_m$
- e) $L_t = S_t$

$$L_{t-1} = S_{t-1} - {t-1 \choose t-2} S_t$$

Assume
$$L_{k+1} = S_{k+1} - {k+1 \choose k} S_{k+2} + {k+2 \choose k} S_{k+3} - \dots + (-1)^{t-k-1} {t-1 \choose k} S_t$$

$$L_k = L_{k+1} + E_k =$$

$$\left[S_{k+1} - {k+1 \choose k} S_{k+2} + {k+2 \choose k} S_{k+3} - \dots + (-1)^{t-k-1} {t-1 \choose k} S_t\right]$$

$$+[S_k - {k+1 \choose 1}S_{k+1} + {k+1 \choose 2}S_{k+2} - \dots + (-1)^{t-k} {t \choose t-k}S_t].$$

For
$$1 \le r \le t - k$$
, the coefficient of S_{k+r} is $(-1)^{r-1} {k+r-1 \choose k} + (-1)^r {k+r \choose r} = (-1)^r {k+r-1 \choose k-1}$.

Consequently,
$$L_k = S_k - {k \choose k-1} S_{k+1} + {k+1 \choose k-1} S_{k+2} - \dots + (-1)^{t-k} {t-1 \choose k-1} S_t$$
.

Ex 8.3: (1)

• For $1 \le i \le 5$ let c_i be the condition that 2i is in position 2i.

$$N = 10!$$
; $N(c_i) = 9!$; $N(c_i c_j) = 8!$, $1 \le i < j \le 5$; ...; $N(c_1 c_2 c_3 c_4 c_5) = 5!$.

$$N(\overline{c_1}\overline{c_2}\overline{c_3}\overline{c_4}\overline{c_5}) = 10! - {5 \choose 1}9! + {5 \choose 2}8! - {5 \choose 3}7! + {5 \choose 4}6! - {5 \choose 5}5!$$

Ex 8.3: (4)

• There are 7! = 5040 permutations for 1,2,3,4,5,6,7.

Among these there are $7! \left[1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} \right] = 1854$ derangements.

Consequently, we have 5040 - 1854 = 3186 permutations of 1,2,3,4,5,6,7 that are not derangements.

Ex 8.3: (6)

- a) There are $(d_4)^2 = 9^2 = 81$ such derangements.
- b) In this case we get $(4!)^2 = 24^2 = 576$ derangements.

Ex 8.3: (9)

• $(10!)d_{10} \doteq (10!)^2(e^{-1})$

Ex 8.3: (10)

- a) (i) $\frac{d_n}{n!}$. (ii) $\frac{n(d_{n-1})}{n!}$. (iii) $1 \frac{d_n}{n!}$. (iv) $\frac{\binom{n}{r}d_{n-r}}{n!}$.
- b) (i) e^{-1} . (ii) e^{-1} . (iii) $1 e^{-1}$. (iv) $\left(\frac{1}{r!}\right)e^{-1}$.

Ex 8.4 and Ex 8.5: (4)

•
$$r(C_1, x) = 1 + 4x + 3x^2 = r(C_2, x)$$

Ex 8.4 and Ex 8.5: (5)

- a) (i) $(1+2x)^3$ (ii) $1+8x+12x^2+4x^3$ (iii) $1+9x+25x^2+21x^3$ (iv) $1+8x+16x^2+7x^3$
- b) If the board C consists of n steps, and each step has k blocks, then $r(C, x) = (1 + kx)^n$.

Ex 8.4 and Ex 8.5: (7)

•
$$r(C,x) = (1 + 4x + 3x^2)(1 + 4x + 2x^2)$$

= $1 + 8x + 21x^2 + 20x^3 + 6x^4$.

For $1 \le i \le 5$ let c_i be the condition that an assignment is made with person (i) assigned to a language he or she wishes to avoid.

$$N(\overline{c_1}\overline{c_2}\overline{c_3}\overline{c_4}\overline{c_5}) = 5! - 8 \times 4! + 21 \times 3! - 20 \times 2! + 6 \times 1! = 20.$$

		Java	C++	VHDL	Perl	SQL
(1)	Jeanne					
(2)	Charles					
(3)	Todd					
(4)	Paul					
(5)	Sandra					

Ex 8.4 and Ex 8.5: (8)

• The factor 6! is needed because we are counting ordered sequences.

Ex 8.4 and Ex 8.5: (12)

• Consider the chessboard *C* of shaded squares.

Here $r(C, x) = 1 + 8x + 20x^2 + 17x^3 + 4x^4$. For any one-to-one function $f: A \to B$, let c_1, c_2, c_3, c_4 denote the conditions:

$$c_1$$
: $f(1) = v$ or w c_3 : $f(3) = x$

$$c_2$$
: $f(2) = u$ or w c_4 : $f(4) = v, x$, or y

The answer to this problem is $N(\overline{c_1}\overline{c_2}\overline{c_3}\overline{c_4})$. So there are 146 one-to-one functions $f: A \to B$ where

$$f(1) \neq v, w$$
 $f(3) \neq x$
 $f(2) \neq u, w$ $f(4) \neq v, x, y$.

