Name:

Student ID:

Quiz #1 (4%)

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

3:20 - 3:45 p.m., March 11th, 2013

This is a closed book test. Any academic dishonesty will automatically lead to zero point.

(1%) How many positive integers n can we form using the digits 3, 4, 4, 5, 5, 6, 7 if we want n to exceed 6,000,000?

Answer:

Case1: the leading digit is 6: $\frac{6!}{2!2!}$. Case2: the leading digit is 7: $\frac{6!}{2!2!}$. In total there are $2 \times \frac{6!}{2!2!} = 360$

- 2) (1%) Answer the following questions:
 - a) In how many possible ways could a student answer a 9-question true-false test?
 - b) In how many ways can the student answer the above test if he/she can leave a question unanswered to avoid extra penalty for wrong answers?

Answer:

- a) With two choices per question. There are 2^9 .
- b) With three choices per question. There are 3^9 .

- 3) (1%) Determine the coefficient of
 - a) xyz^2 in $(x + y + 2z)^5$
 - b) $w^3x^2yz^2$ in $(2w x + 3y 2x)^8$

Answer:

- a) The coefficient of xyz^2 in $(x + y + 2z)^5$ is 0. Because xyz^2 doesn't exist.
- b) The coefficient of $w^3 x^2 y z^2$ in $(2w x + 3y 2x)^8$ is $\binom{8}{3}\binom{5}{2}\binom{3}{1}\binom{2}{2}2^3(-1)^23(-2)^2 = 161280.$

- 4) (1%) How many different ways are there to place 16 marbles of the same size in 6 distinct jars if
 - a) the marbles are all blue?
 - b) each marble is in a different color?

Answer:

a) The number of solutions equals the number of solutions to

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 16$ where $x_i \ge 0$ for $1 \le i \le 6$. The number is $\binom{16+6-1}{16} = \binom{21}{16} = 20349$.

b) Each marble has 6 choices. The number is 6^{16} .