Name:

Student ID:

Quiz #2 (4%)

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

3:30 - 3:50 p.m., March 18th, 2013

This is a closed book test. Any academic dishonesty will automatically lead to zero point.

1) (1%) For primitive statements p, q:

- a) (0.25%) verify that $p \to [q \to (p \land q)]$ is a tautology.
- b) (0.25%) verify that $(p \lor q) \to [q \to q]$ is a tautology by using the results from part (a) along with the substitution rules and the laws of logic.
- c) (0.5%) is $(p \lor q) \to [q \to (p \land q)]$ a tautology?

Answer:

nswer:					
	p	q	$p \wedge q$	$q \to (p \land q)$	$p \to [q \to (p \land q)]$
	0	0	0	1	1
a)	0	1	0	0	1
	1	0	0	1	1
	1	1	1	1	1
	$\Rightarrow j$	\rightarrow	$q \to (q \to q)$	$p \wedge q)$] is a tau	ıtology.

b) Replacing p to $(p \lor q)$ in (a). $\Rightarrow (p \lor q) \to [q \to ((p \lor q) \land q)]$ (the substitution rules) $\Rightarrow (p \lor q) \rightarrow [q \rightarrow q]$ (the absorption law) $\Rightarrow p \rightarrow [q \rightarrow (p \land q)] \Leftrightarrow (p \lor q) \rightarrow [q \rightarrow q] \text{ is a tautology}.$

	p	q	$p \vee q$	$p \wedge q$	$q \to (p \land q)$	$(p \lor q) \to [q \to (p \land q)]$
	0	0	0	0	1	1
c)	0	1	1	0	0	0
	1	0	1	0	1	1
	1	1	1	1	1	1
	\Rightarrow ($(p \lor$	$(q) \rightarrow [q]$	$q \to (p)$	$(\land q)$] is not a (autology.

Answer:

- (1%) Write each of the following arguments in symbolic form. Then establish the validity of the argument or give a counter example to show that it is invalid.
 - a) If Rochelle gets the supervisor's position and works hard, then she will get a raise. If she gets the raise, then she will buy a new car. She has not purchased a new car. Therefore, either Rochelle did not get the supervisor's position or she did not work hard.

2

- b) If there is a chance of rain or her red headband is missing, then Lois will not mow her lawn. Whenever the temperature is over 80 ° F, there is no chance for rain. Today, the temperature is 85 ° and Lois is wearing her red headband. Therefore Lois will mow her lawn sometime today.
- p: Rochelle gets the supervisor's position. r: Rochelle gets the raise. q: Rochelle works hard. s: Rochelle buy a new car. 1) $\neg s$ Premise 2) $r \rightarrow s$ Premise a) 3) *¬r* Steps (1), (2) and Modus Tollens 4) $(p \land q) \rightarrow r$ Premise 5) $\neg (p \land q)$ Steps (3), (4) and Modus Tollens 6) $\neg p \lor \neg q$ Step (5) and $\neg (p \land q) \leftrightarrow \neg p \lor \neg q$

	p: There is a chance of rain.	r: Lois does not mow her lawn.
	q: Lois' red headband is missing	s: The temperature is over 80° F.
	1) $s \to \neg p$	Premise
	2) $s \land \neg q$	Premise
b)	3) <i>¬p</i>	Step (1), (2) and Rule of Detachment
	4) $(p \lor q) \to r$	Premise
	5) $\neg r \rightarrow (\neg p \land \neg q)$	Negation the step (4)
	6) <i>¬r</i>	

- 3) (1%) Let $p(x,y) : x^2 \ge y$ and q(x,y) : x + 2 > y be two open statements. Consider a universe of all real numbers, determine the truth value for each of the following statements.
 - a) p(2,4)
 - b) $q(1,\pi)$
 - c) $p(-3,8) \wedge q(1,3)$
 - d) $p(1,2) \leftrightarrow \neg q(1,2)$
 - e) $p(2,2) \to q(1,1)$

Answer:

- a) True, $2^2 \ge 4$
- b) False, $1 + 2 > \pi$
- c) False, $((-3)^2 \ge 8) \land (1+2>3) = (True \land False)$
- d) True, $((1^2 \ge 2) \leftrightarrow \neg (1 + 2 \ge 2)) = (False \leftrightarrow False)$
- e) True, $((2^2 \ge 2) \to (1+2>1)) = (True \to True)$

4) (1%) Let n be an integer. Prove that n is even if and only if 29n + 14 is even.
If n is even, then n = 2k for some (particular) integer k. Then 29n + 14 = 29(2k) + 14 = 2(29k + 7), so it follows from Definition 2.8 that 29n + 14 is even.
Conversely, suppose that n is not even. Then n is odd, so n = 2t + 1 for some (particular) integer t. Therefore, 29n + 14 = 29(2t + 1) + 14 = 2(29t + 21) + 1, so from Definition 2.8 we have 29n + 14 odd ... hence, not even.

Consequently, the converse follows by contraposition.