Name:

Student ID:

Quiz #6 (4%)

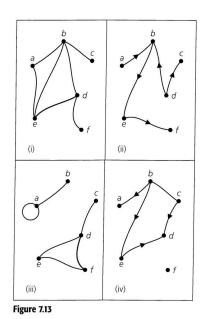
CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

3:30 - 3:50 p.m., May 6th, 2013

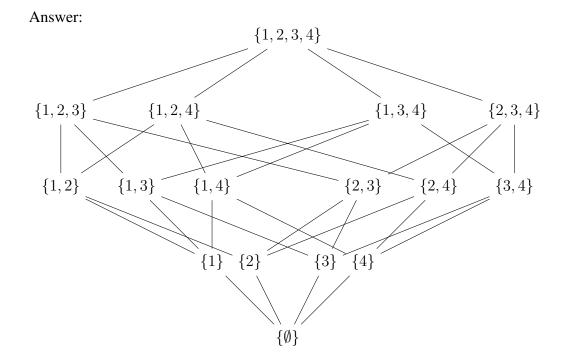
This is a closed book test. Any academic dishonesty will automatically lead to zero point.

(1%) For A = {a, b, c, d, e, f}, each graph, or digraph, in Figure 1 represents a relation *R* on A. Write each relation *R* ⊆ A × A as a relation matrix M(*R*).



	0	1	0	0	1	0		0	1	0	0	0	0		1	1	0	0	0	0		0	0	0	0	0	0
	1	0	1	1	1	0		0	0	0	0	1	0		1	0	0	0	0	0		1	0	1	0	1	0
(;)	0	1	0	0	0	0		0	0	0	0	0	0	(iii)	0	0	0	1	0	0		0	1	0	1	0	0
(i)	0	1	0	0	1	1	(ii)	0	1	1	0	0	0	$(\imath\imath\imath)$	0	0	1	0	1	1	(iv)	0	0	0	0	0	0
	1	1	0	1	0	0		0	0	0	0	0	1		0	0	0	1	0	1		0	0	0	1	0	0
	0	0	0	1	0	0		0	0	0	0	0	0		0	0	0	1	1	0		0	0	0	0	0	0

2) (1%) Draw the Hasse diagram for the poset $(\mathscr{P}(\mathscr{U}), \subseteq)$, where $\mathscr{U} = \{1, 2, 3, 4\}$.



- 3) (1%) For $A = \mathbb{R}^2$, define \mathscr{R} on A by $(x_1, y_1)\mathscr{R}(x_2, y_2)$ if $x_1 = x_2$.
 - a) Verify that \mathscr{R} is an equivalence relation on A.
 - b) Describe geometrically the equivalence classes and partition of A induced by \mathscr{R} . Answer:
 - a) i) Reflexive:

$$(x, y) \in A$$

$$\Rightarrow x = x$$

$$\Rightarrow (x, y) \mathscr{R}(x, y)$$

- ii) Symmetric:
 - $(x_1, y_1) \mathscr{R}(x_2, y_2)$ $\Rightarrow x_1 = x_2$ $\Rightarrow (x_2, y_2) \mathscr{R}(x_1, y_1)$
- iii) Transitive:
 - $(x_1, y_1) \mathscr{R}(x_2, y_2)$ and $(x_2, y_2) \mathscr{R}(x_3, y_3)$
 - $\Rightarrow x_1 = x_2$ and $x_2 = x_3$

$$\Rightarrow x_1 = x_3$$

$$\Rightarrow (x_1, y_1) \mathscr{R}(x_3, y_3)$$

- ${\mathscr R}$ satisfies reflexive, symmetric and transitive.
- $\Rightarrow \mathscr{R}$ is an equivalence relation on A.
- b) The whole lines are vertical to x-axis, and they partitions A.

4) ((1%)	Apply	the m	inimization	process	to e	each	finite	state	machine	in	Figure 4.	
------	------	-------	-------	-------------	---------	------	------	--------	-------	---------	----	-----------	--

		v	ω		
	0	1	0	1	
<i>s</i> ₁	<i>s</i> ₄	<i>s</i> ₁	0	1	
s2	\$3	\$3	1	0	
\$3	S1	<i>S</i> 4	1	0	
<i>s</i> ₄	S1	\$3	0	1	
\$5	\$3	\$3	1	0	

	1	v	ω			
	0	1	0	1		
<i>s</i> ₁	<i>s</i> ₆	<i>s</i> ₃	0	0		
<i>s</i> ₂	\$5	<i>S</i> 4	0	1		
\$3	56	<i>s</i> ₂	1	1		
<i>s</i> ₄	<i>s</i> ₄	\$3	1	0		
\$5	s2	<i>s</i> ₄	0	1		
<i>s</i> ₆	<i>s</i> ₄	<i>s</i> ₆	0	0		

(b)

Answer:

- a) $P_1: \{s_1, s_4\}, \{s_2, s_3, s_5\}$ $(v(s_1, 0) = s_4)E_1(v(s_4, 0) = s_1)$ but $(v(s_1, 1) = s_1)\neg E_1(v(s_4, 1) = s_3)$ $(v(s_2, 0) = s_3)\neg E_1(v(s_3, 0) = s_1)$ $(v(s_2, 0) = s_3)E_1(v(s_5, 0) = s_3)$ and $(v(s_2, 1) = s_3)E_1(v(s_5, 1) = s_3)$ Since $s_2\neg E_1s_3$ and $s_2E_1s_5$, it follows that $s_3\neg E_1s_5$ Hence P_2 is given by $P_2: \{s_1\}, \{s_4\}, \{s_2, s_5\}, \{s_3\}.$ $(v(s_2, x) = s_3)E_2(v(s_5, x) = s_3)$ for x = 0, 1. Hence $s_2E_3s_5$ and $P_2 = P_3$. Consequently, state s_2 and s_5 are equivalent.
- b) States s_2 and s_5 are equivalent.