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Recap 

§  For sets A, B, any subset of           is called a 
(binary) relation from A to B. Any subset of            
is called a (binary) relation on A 

-  Ex: Let     be an alphabet, with language            . For x, y 
in A, we define         if x is a prefix of y. 

-  Ex: Consider a state machine  
•  First level of reachability:  
•  Second level:  

-  Ex: Define a relation on integers,          if a <=b 
-  Ex: Define a relation on integer with modulo n 
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A ˆ B

A ˆ A

⌃ A Ñ ⌃˚

xRy

M “ pS,I ,O, ⌫,!q
s1Rs2 if ⌫ps1, xq “ s2

s1Rs2 if ⌫ps1, x1x2q “ s2, x1x2 P I 2

xRy



Reflexive 

§ A relation    on a set A is called reflexive if for all 

§  Ex 7.4: Consider A={1,2,3,4}, a relation                  
is reflexive iff 

-  Are the following relations reflexive?   
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R

x P A, px, xq P R

R Ñ A ˆ A

R Ö tp1, 1q, p2, 2q, p3, 3q, p4, 4qu

R1 “ tp1, 1q, p2, 2q, p2, 3qu
R2 “ tpx, yq|x, y P A, x • yu



Symmetric 

§ A relation    on a set A is called symmetric if for all    

     , we know  

 

§  Ex 7.6: Consider A={1,2,3}, are the following 
relations symmetric or reflexive? 
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R

x, y P A

px, yq P R ùñ py, xq P R

R1 “ tp1, 2q, p2, 1q, p1, 3q, p3, 1qu
R2 “ tp1, 1q, p2, 2q, p2, 3q, p3, 3qu
R3 “ tp1, 1q, p2, 2q, p2, 3q, p3, 3q, p3, 2qu



Transitive 

§ A relation    on a set A is called transitive if for all    

       , we know  

 

§  Ex 7.10: Consider A={1,2,3,4}, are the following 
relations transitive? 
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R

x, y, z P A

xRy and yRz ùñ xRz

R1 “ tp1, 1q, p2, 3q, p3, 4q, p2, 4qu
R2 “ tp1, 3q, p3, 4qu



Antisymmetric 

§ A relation    on a set A is called antisymmetric if for 
all           , if     

  

§  Ex 7.11: For any universe   , relation    defined on    
by                             . Is this relation antisymmetric? 
How about reflexive, symmetric, and transtive?  
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R

a, b P A aRb and bRa ùñ a “ b

R PpU qU

pA,Bq P R if A Ñ B



Partial Order 

§ A relation    on a set A is called partial order if it is 
reflexive, antisymmetric, and transitive 

  

§  Ex 7.14: Are the following relations partial order? 
-  Define a relation on    by  
-  Let           , for             , the modulo n relation    is defined 

by        , if x –y is a multiple of n  
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R

Z pa, bq P R if a § b

n P Z`
x, y P Z R

xRy



Equivalence Relation 

§ A relation    on a set A is called equivalence relation 
if it is reflexive, symmetric, and transitive 

  

§  Ex 7.16: Are the following relations equivalence 
relations? 
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R

R1 “ tp1, 1q, p2, 2q, p3, 3qu
R2 “ tp1, 1q, p2, 2q, p2, 3q, p3, 2q, p3, 3qu
R3 “ tp1, 1q, p1, 3q, p2, 3q, p3, 1q, p3, 3qu
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Composite Relation 

§  If                                            then the composite 
relation              is a relation from A to C defined by 

§  Ex 7.17: Let                                                             . 
If                                              and                            . 
Write            . If                             , what is            ?                                    
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R1 Ñ A ˆ B and R2 Ñ B ˆ C

R1 ˝ R2

A “ t1, 2, 3, 4u, B “ tw, x, y, zu, C “ t5, 6, 7u
R1 “ tp1, xq, p2, xq, p3, yq, p3, zqu R2 “ tpw, 5q, px, 6qu

R1 ˝ R2 R1 ˝ R3R3 “ tpw, 5q, pw, 6qu

R1 ˝ R2 “ tpx, zq|x P A, z P C, Dy P B s.t. px, yq P R1, py, zq P R2u



Association and Powers 

§  Let                                                       , we have 

-  There is no ambiguity if we write  

§  Powers of     on A are recursively defined by: (i)                  
and (ii)        

§  Ex 7.19: If                                                                , 
what are                  ?  
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R1 Ñ A ˆ B,R2 Ñ B ˆ C,R3 Ñ C ˆ B

R1 ˝ pR2 ˝ R3q “ pR1 ˝ R2q ˝ R3

R1 ˝ R2 ˝ R3

R R1 “ R

Rn`1 “ R ˝ Rn, where n P Z`

A “ t1, 2, 3, 4u,R “ tp1, 2q, p1, 3q, p2, 4q, p3, 2qu
R2,R3,R4



Zero-One Matrix 

§ An m by n zero-one matrix                   , is a 
rectangular array with m rows and n columns, 
where each     denotes the entry in the ith row and 
jth column, which can be either 0 or 1  

§  Ex 7.20: E is a 3 by 4 zero-one matrix 
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E “ peijqmˆn

eij

E “
»

–
1 0 0 1
0 1 0 1
1 0 0 0

fi

fl



Relation Matrices 

§  Ex 7.21: Write the following relations into relation 
matrices  

§ Note that, a convention used here is 1 + 1 = 1, 
which is called boolean addition  
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A “ t1, 2, 3, 4u, B “ tw, x, y, zu, C “ t5, 6, 7u
R1 “ tp1, xq, p2, xq, p3, yq, p3, zqu
R2 “ tpw, 5q, px, 6qu

MpR1q “

»

——–

0 1 0 0
0 1 0 0
0 0 1 1
0 0 0 0

fi

��fl MpR2q “

»

——–

1 0 0
0 1 0
0 0 0
0 0 0

fi

��fl

MpR1qMpR2q “?



Some Properties 

§  Let A be the set with n elements.      is a relation on 
A. If         is the relation matrix for     then 

-     
-     
-       
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R
MpRq R

MpRq “ 0 i↵ R “ H
MpRq “ 1 i↵ R “ A ˆ A

MpRmq “ MpRqm, for m P Z`



Precedes, Identify Matrix, Transpose 

§  Let E and F be two m by n (0,1) matrices. We say E 
precedes, or is less than F, and we write             if  

§  Identify Matrix: 

§  Transpose:   
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E § F

eij § fij ,@1 § i § m, 1 § j § n

In “ p�ijqnˆn, where �ij “ 1 if i “ j, �ij “ 0, o.w.

Atr : a˚
ji “ aij



Relations in Matrices 
§ Given a relation     on A, where |A| = n. Let M be the 

relation matrix of  
-       is reflexive iff   
-       is symmetric iff 
-       is transitive iff 
-       is antisymmetic iff 

•  where  
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In § M

R

R

R

R

R

R

M “ M tr

M2 § M

M X M tr § In

1 X 1 “ 1, 1 X 0 “ 0 X 1 “ 0, 0 X 0 “ 0



Directed Graph 
§  Let V be a finite set. A directed graph (or digraph) 

G on V is made up the elements of V, called the 
vertices or nodes of G, and a subset E, of           , 
that contains the directed edges, or arcs, of G. The 
set V is called the vertex set of G, and the set E is 
called the edge set. G = (V,E) denotes the graph. 

§  If              , then there is an edge from a to b. Vertex 
a is called the origin, and b is called terminus. We 
say b is adjacent from a and a is adjacent to b.  

§  If         then                  . An edge from a to a if 
called a loop. 
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V ˆ V

pa, bq P E

a ‰ b pa, bq ‰ pb, aq



Examples of Digraphs 
§ Are there isolated vertices? 

§ Undirected edges {a,b}={b,a} 
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Precedence Graph 
§ Dependency among statements (computer 

programs) 
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A Few More Terms 
§ What are: (i) associated undirected graph, (ii) path 

(cannot contain duplicated vertices), (iii) connected 
graph, (iv) length, (v) loop, and (vi) cycle? 

21 



Strongly Connected 
§ A directed graph G on V is called strongly 

connected if there is a path from any vertex x to any 
vertex y 

§  The graph on the right is connected but 

   not strongly connected 

§ The graph on the right is strongly 

    connected and loop-free 
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Components 
§  Two components in each graph 

23 



Complete Graphs 
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Matrices and Graphs 
§ A graph G describes a relation 

-  If (x,y) is an edge in G, then  

§  Both 0-1 matrix and digraph can describe relations 
-  The matrix is called the adjacency matrix for G 
-  Or a relation matrix for  
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R

xRy

R



Reflexive and Antisymmetric 
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Symmetric 
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Transitive and Antisymmetric 
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Partially Ordered Set 
§       is a relation on A.            is called partially 

ordered set if relation    on A is a partial order 
relation 

-  Reflexive, antisymmetric, transitive 
-  Also called poset 

§  Ex 7.34: Define the relation         if x, y are the same 
course or if x is a prerequisite of y 
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R pA,Rq
R

xRy



Not Partial Order 
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Hasse Diagram 
§ Drop loops 

§ Drop transitive edge 

§ Directions go from bottom up 
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Totally Ordered 
§  If           is a poset, A is totally ordered (or linearly 

ordered) if for any x and y, either         or          . 
-      is called a total order (or a linear order) 
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pA,Rq
yRxxRy

R



Partial vs. Total Orders 
§  Consider a car manufacturer which needs to 

assemble 7 components into a car. The partial order 
is     given below 

-  Can the company find a total order    so that              ?  
-  Topological sorting! 
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R

R Ñ TT



Topological Sorting 
§  Idea: Repeatedly remove the vertex that is not a 

source (nor an implicit source) of any edge, until we 
have no vertex left in the Hasse diagram 
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Topological Sorting Algorithm 

§  Input: A partial order     on a set A, where |A| = n 

§  Step 1: Let k = 1, Let H1 be the Hasse diagram 

§  Step 2: Select vk from Hk, so that no (implicitly 
directed) edge in Hk starts at vk 

§  Step 3: If k < n, remove vk and edges terminating at 
vk from Hk. Call the new Hasse Hk-1, and goto step 1 

§  Step 4: The total order that contains     is 
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R

R

T : vn † vn´1 † ¨ ¨ ¨ † v2 † v1



Maximal, Minimal Elements 

§  If          is a poset, an element         is a maximal 
element of A if for all                                    . An 
element         is a minimal element of A if for all 

 

§  Ex 7.42: Define     be “less than or equal to” 
relation on    , we find that          is a poset with no 
maximal nor minimal element. How about          ? 

§ A poset may have multiple maximal (minimal) 
elements! Recall the topological sorting algorithm. 

§  If          is a poset and A is finite, A has both a 
maximal and a minimum element 37 

pA,Rq
x P A

y P A

b P A, b ‰ y ùñ  pbRyq

a P A, a ‰ x ùñ  pxRaq

R

Z pZ,Rq
pN,Rq

pA,Rq



Least, Greatest Elements 

§  If          is a poset, an element         is a least element 
of A if                  . An element         is a greatest 
element of A if  

-  If a poset has a greatest (least) element, the element is unique 

§  Ex 7.45: Define                  ,     be subset relation 
-  Poset                    has     as a least element and     as a 

greatest element  
-  Let A be all the nonempty subsets of     .            has        

as the greatest element. It has no least element, but three 
minimal elements. 
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pA,Rq
x P A

y P A
xRa @a P A

bRy @b P A

U “ t1, 2, 3u R

pPpU q,Ñq H U

pA,Ñq UU



Lower and Upper Bounds 

§  If          is a poset and          . An element         is 
called a lower bound of B if                 . An element    
is called an upper bound of B if 

-            is a greatest lower bound (glb) of B if it is a lower 
bound of B and 

-            is a least upper bound (lub) of B if it is an upper 
bound of B and 

§  Ex 7.47: Let                           and     be the subset 
relation on A. If                              then what are the 
upper bounds? What is the least upper bound? What 
is the greatest lower bound? 

-  Lub and glb are unique 39 

pA,Rq B Ñ A x P A

xRb @b P B

bRy @b P B

y P A

x

1 P A

x

2Rx

1
for any other lower bound x

2
of B

x

1Rx

2
for any other upper bound x

2
of B

x

1 P A

A “ Ppt1, 2, 3, 4uq R

B “ tt1u, t2u, t1, 2uu



Lattice 

§ A poset          is called a lattice if for all            the 
elements                                both exist in A 
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pA,Rq x, y P A

lubtx, yu and glbtx, yu
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Equivalence Relations 

§ A relation      on     is an equivalence relation if it’s 
reflexive, symmetric, and transitive.  

§  Ex 1: For           , the equality relation is an 
equivalence relation, in which two elements are 
related if they are identical.  

§  Ex 2: Consider a relation on    , where         if          
is a multiple of 2. 

-  How does this relation split     into two subsets?       
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R A

A ‰ H

Z xRy

x ´ y

Z



Partition 

§  Let A be a set and I be an index set, where Ai is not 
empty and            , for all        .            is a partition 
of A if 

-    
-                         for all    
Each subset Ai is a cell, or block of the partition 

§  Ex 7.52: For A = {1,2,3,…,10}, the following are 
partitions of A 

-  {{1,2,3,4,5}, {6,7,8,9,10}} 
-  Ai={i, i+5},  
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Ai Ñ A i P I tAiuiPI

A “
§

iPI
Ai

Ai

£
Aj “ H i ‰ j; i, j P I

1 § i § 5



Equivalence Class 
§  Let     be an equivalence relation on    . The 

equivalence class of         , denoted as     , is defined 
by           

§  Ex 7.52:     is a equivalence relation on    , where       
if             . The four equivalence classes are 

-     
-     
-     
-     
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R A

x P A

rxs
rxs “ ty|y P A, yRxu

R Z xRy

4|px ´ yq
r0s “ t4k|k P Zu
r1s “ t4k ` 1|k P Zu
r2s “ t4k ` 2|k P Zu
r3s “ t4k ` 3|k P Zu



Properties of Equivalence Class 

§  Let     is an equivalence relation on   , and            . 
-        
-            iff 
-                 or 

§  This theorem tells us the distinct equivalence 
classes given by    gives us a partition of  
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R A x, y P A

x P rxs
xRy rxs “ rys
rxs “ rys rxs X rys “ H

R A



Examples of Partitions 

§  Ex 7.56 (a) : Let                        and  

    what’s the corresponding partition? 

§  Ex 7.56 (b): Function               , where  

    and                    , f is defined as 

 

   We define a relation    by       if                . What is    
the partition determined by    ? 
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A “ t1, 2, 3, 4, 5u
R “ tp1, 1q, p2, 2q, p2, 3q, p3, 2q, p3, 3q, p4, 4q, p4, 5q, p5, 4q, p5, 5qu

f : A Ñ B A “ t1, 2, 3, 4, 5, 6, 7u

B “ tx, y, zu
tp1, xq, p2, xq, p3, xq, p4, yq, p5, zq, p6, yq, p7, xqu

R aRb fpaq “ fpbq
R



Examples of Partitions (cont.) 

§  If an equivalence relation    on                          
results in the partition                                             , 
what is    ? What’s the size of it? 
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R

R A “ t1, 2, 3, 4, 5, 6, 7u
A “ t1, 2u Y t3u Y t4, 5, 7u Y t6u

R “ pt1, 2u ˆ t1, 2uq Y pt3u ˆ t3uq Y pt4, 5, 7u ˆ t4, 5, 7uq Y pt6u ˆ t6uq



Equivalence Class and Partition 

§  For a set A 
-  Any equivalence relation     on A leads to a partition of A 
-  Any partition of A gives an equivalence relation     on A 

§  For any set A, there is a one-to-one correspondence 
between the set of equivalence relations on A and 
the set of partitions of A. 

-  So counting the number of partitions is the same as 
counting 1-1 functions. 
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R

R
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Redundant States 
§  Redundant state: A state that can be eliminated 

because other states will perform its function 

§  Consider a finite state machine                            , 
Let a relation           if                           for all 

-       is called 1-equivalent.  

§             if                           for all              
-       is called k-equivalent 

§           if            is true for all 
-      is called equivalent 
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M “ pS,I ,O, ⌫,!q
s1E1s2 !ps1, xq “ !ps2, xq x P I

E1

s1Eks2 !ps1, xq “ !ps2, xq
x P I k

Ek

s1Es2 k • 1s1Eks2

E



Minimization Algorithm 
§  To get rid of redundant states 

§  Step 1: Let k=1, find states that are 1-equivalent by 
examining the output rows in the state table. This 
gives partition P1 and relation E1 

§  Step 2: When Pk is found, we obtain Pk+1 by 
knowing that if s1Eks2, then s1Ek+1s2 when          

-  This is true if                                  are in the same cell of 
Pk  

§  Step 3: If Pk+1=Pk, we are done, o.w. goto step 2 
51 

⌫ps1, xqEk⌫ps2, xq @x P I

⌫ps1, xq and ⌫ps2, xq



A Simple Example 
§  Ex 7.60: If                        , the state table is given 

below. What is P1?  

§  Show                         , and thus? 

§  Show                              , and thus? 

§     
§  Since            , we need to get 

-  Because             , we stop here 
-           are redundant states      
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I “ O “ t0, 1u

⌫ps3, xqE1⌫ps4, xq

 r⌫ps5, xqE1⌫ps6, xqs

P1 : ts1u, ts2, s5, s6u, ts3, s4u

P2 : ts1u, ts2, s5u, ts6u, ts3, s4u

P1 ‰ P2 P3

P3 “ P2

s5, s4



Refinement 
§  P2 is called a refinement of P1,             , if every cell 

of P2 is contained in a cell of P1. When         
and            , we write            .  

§  In the minimization process, if k>=1 and Pk=Pk+1, 
then Pr+1=Pr for all r >=k+1 
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P2 § P1

P2 § P1

P2 ‰ P1 P2 “ P1



Distinguishing String 
§ A sample string with length k+1that leads to 

different outputs for states s1 and s2 

§  Ex 7.61: Find the minimal distinguish string for s2 
and s6 in the finite state machine of Ex 7.60 
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P2 : ts1u, ts2, s5u, ts6u, ts3, s4u

P1 : ts1u, ts2, s5, s6u, ts3, s4u



Take-home Exercises 

55 

§  Exercise 7.1: 1, 5, 6, 9, 17 

§  Exercise 7.2: 4, 14, 17, 18, 26 

§  Exercise 7.3: 1, 7, 18, 23, 25 

§  Exercise 7.4: 2, 6, 7, 12, 14 

§  Exercise 7.5: 1, 3 


