Solution Week 1

Ex 1.1 & 1.2: 15, 22, 28, 32, 33

Ex 1.3: 13, 16, 25, 29, 34

Ex 1.4: 7, 17, 24, 26, 28

Ex 1.1 & 1.2: (15)

- * Here we must place a, b, c, d in the the positions denoted by x: e \underline{x} e \underline{x} e \underline{x} e \underline{x} e.
- * By the rule of product there are 4! ways to do this.

Ex 1.1 & 1.2: (22)

- * Case1: The leading digit is 5: (6!)/(2!)
- * Case2: The leading digit is 6: $(6!)/(2!)^2$
- * Case3: The leading digit is 7: $(6!)/(2!)^2$
- * In total there are [(6!)/(2!)][1+(1/2)+(1/2)] = 720 such position integers n.

Ex 1.1 & 1.2: (28)

- a) The for loops for i, j, k are executed 12, 6, 8 times, respectively. The value of counter is 0 + 12x1 + 6x2 + 8x3 = 48.
- b) By the rule of sum.

Ex 1.1 & 1.2: (32)

- a) For positive integers n, k where n = 3k, $n!/(3!)^k$ is the number of ways to arrange the n objects $x_1, x_1, x_2, x_2, x_2, \dots, x_k, x_k, x_k$. This must be an integer.
- b) If n, k are positive integers with n = mk, then $n!/(m!)^k$ is an integer.

Ex 1.1 & 1.2: (33)

- a) With 2 choices per question. There are $2^{10} = 1024$ ways.
- b) With 3 choices per question. There are 3¹⁰ ways.

Ex 1.3: (13)

- * The letters M,I,I,I,P,P,I can be arranged in [7!/(4!2!)] ways. Each arrangement provides 8 locations for placing the 4 nonconsecutive S's.
- * Four of there locations can be selected in $\binom{s}{4}$ ways. Hence, total number of these arrangements is $\binom{s}{4}[7!/(4!2!)]$.

Ex 1.3: (16)

- a) 97
- b) -5
- c) 12
- d) 0
- e) 3

Ex 1.3: (25)

a)
$$\binom{4}{1,1,2} = 12$$

b)
$$\binom{4}{0,1,1,2} = 12$$

c)
$$\binom{4}{1,1,2}(2)(-1)(-1)^2 = -24$$

d)
$$\binom{4}{1,1,2}(-2)(3)^2 = -216$$

e)
$$\binom{8}{3,2,1,2}(2)^3(-1)^2(3)(-2)^2 = 161280$$

Ex 1.3: (29)

*
$$n\binom{m+n}{m}$$

$$= n \frac{(m+n)!}{m! \, n!}$$

$$= \frac{(m+n)!}{m! \, (n-1)!}$$

$$= (m+1) \frac{(m+n)!}{(m+1)(m!)(n-1)!}$$

$$= (m+1) \binom{m+n}{m+1}$$

Ex 1.3: (34)

```
procedure Select2 (i,j: positive integers)
begin
    for i := 1 to 5 do
        for j := i + 1 to 6 do
            print (i,j)
    end
procedure Select3 (i,j,k: positive integers)
begin
    for i := 1 to 4 do
        for j := i + 1 to 5 do
            for k := j + 1 to 6 do
            print (i,j,k)
    end
```

Ex 1.4: (7)

a)
$$\binom{4+32-1}{32} = \binom{35}{32}$$

b)
$$\binom{4+28-1}{28} = \binom{31}{28}$$

$$c) \quad \binom{4+8-1}{8} = \binom{11}{8}$$

- d) 1
- e) Let $y_i = x_i + 2$, $1 \le i \le 4$. The number of solutions to the given problem is then the same as the number of solutions to

$$y_1 + y_2 + y_3 + y_4 = 40, 0 \le y_i,$$

 $1 \le i \le 4. {4+40-1 \choose 40} = {43 \choose 40}.$

f) $\binom{4+28-1}{28} - \binom{4+3-1}{3} = \binom{31}{28} - \binom{6}{3}$, where the term $\binom{6}{3}$ accounts for the solutions where $26 \le x_4$.

Ex 1.4: (17)

a)
$$\binom{5+12-1}{12} = \binom{16}{12}$$

b) 5¹²

Ex 1.4: (24)

a) procedure Selection1 (i,j: nonnegative integers)begin

for
$$i := 0$$
 to 10 do
for $j := 0$ to $10 - i$ do
print $(i,j,10-i-j)$

end

b) Let $y_i = x_i + 2 \ge 0$. It's equal to solve $y_1 + y_2 + y_3 + y_4 = 12$, where $y_i \ge 0$ for $1 \le i \le 4$. The algorithm is like (a).

Ex 1.4: (26)

- * Each such composition can be factored as k times a composition of m.
- * Consequently, there are 2^{m-1} compositions of n, where n = mk and each summand in a composition is a multiple of k.

Ex 1.4: (28.a)

A string of this type consists of x_1 1's followed by x_2 0's followed by x_3 1's followed by x_4 0's followed by x_5 1's followed by x_6 0's, where, $x_1+x_2+x_3+x_4+x_5+x_6=n$, $x_1,x_6\ge 0$, $x_2,x_3,x_4,x_5>0$.

The number of solutions to this equation equals the number of solutions to

 $y_1 + y_2 + y_3 + y_4 + y_5 + y_6 = n-4$, where $y_i \ge 0$ for $1 \le i \le 6$. This number is $\binom{6 + (n-4) - 1}{n-4} = \binom{n+1}{5}$.

Ex 1.4: (28.b)

For n \geq 6, a string with this structure has x_1 1's followed by x_2 0's followed by x_3 1's ... followed by x_8 0's, where $x_1+x_2+...+x_8=n, x_1,x_8\geq 0, x_2,...,x_7>0$

The number of solutions to this equation equals the number of solutions to $y_1 + y_2 + ... + y_8 = n-6$, where $y_i \ge 0$ for $1 \le i \le 8$. This number is $\binom{8 + (n-6) - 1}{n-6} = \binom{n+1}{7}$.

Ex 1.4: $(28.c)_{1/2}$

(c) There are 2^n strings in total and n+1 strings where there are k 1's followed by n-k 0's, for $k=0,1,2,\ldots,n$. These n+1 strings contain no occurrences of 01, so there are $2^n-(n+1)=2^n-\binom{n+1}{1}$ strings that contain at least one occurrence of 01. There are $\binom{n+1}{3}$ strings that contain (exactly) one occurrence of 01, $\binom{n+1}{5}$ strings with (exactly) two occurrences, $\binom{n+1}{7}$ strings with (exactly) three occurrences, ..., and for (i) n odd, we can have at most $\frac{n-1}{2}$ occurrences of 01. The number of strings with $\frac{n-1}{2}$ occurrences of 01 is the number of integer solutions for

$$x_1 + x_2 + \cdots + x_{n+1} = n, \ x_1, x_{n+1} \ge 0, \quad x_2, x_3, \dots, x_n > 0.$$

This is the same as the number of integer solutions for

$$y_1 + y_2 + \dots + y_{n+1} = n - (n-1) = 1$$
, where $y_1, y_2, \dots, y_{n+1} \ge 0$.

This number is
$$\binom{(n+1)+1-1}{1} = \binom{n+1}{1} = \binom{n+1}{n} = \binom{n+1}{2(\frac{n-1}{2})+1}$$
.

Ex 1.4: $(28.c)_{2/2}$

(ii) n even, we can have at most $\frac{n}{2}$ occurrences of 01. The number of strings with $\frac{n}{2}$ occurrences of 01 is the number of integer solutions for

$$x_1 + x_2 + \cdots + x_{n+2} = n, \quad x_1, x_{n+2} \ge 0, \quad x_2, x_3, \ldots, x_n > 0.$$

This is the same as the number of integer solutions for

$$y_1 + y_2 + \cdots + y_{n+2} = n - n = 0$$
, where $y_i \ge 0$ for $1 \le i \le n + 2$.

This number is $\binom{(n+2)+0-1}{0} = \binom{n+1}{0} = \binom{n+1}{n+1} = \binom{n+1}{2(\frac{n}{2})+1}$. Consequently,

$$2^{n} - \binom{n+1}{1} = \binom{n+1}{3} + \binom{n+1}{5} + \dots + \left\{ \binom{\binom{n+1}{n}}{\binom{n+1}{n+1}}, n \text{ odd} \right\}$$

and the result follows.