
Solution 

Ex 5.1: 1, 3, 6, 8, 12 

Ex 5.2: 4, 8, 15, 20, 27 

Ex 5.3: 1, 4, 8, 12, 16 

Ex 5.4: 1, 2, 5, 8, 12 

Ex 5.5: 2, 6, 13, 14, 20 

Ex 5.6: 7, 10, 16, 17, 22 



 A × B =
 {(1,2), (2,2), (3,2), (4,2), (1,5), (2,5), (3,5), (4.5)} 

 B × A ∶
 {(2.1), (2.2), (2.3), (2,4), (5,1), (5,2), (5,3), (5,4)} 

 A ∪ (B × C) =
{1,2,3,4, (2,3), (2,4), (2,7), (5,3), (5,4), (5,7)} 

 A ∪ B × C = A × C ∪ B × C = 

{(1,3), (2,3), (3,3), (4,3), (5,3), 
1,4 , 2,4 , 3,4 , 4,4 , 5,4 , 

(1,7), (2,7), (3,7), (4,7), (5,7)} 

Ex 5.1: (1) 



a)  𝐴 × 𝐵 = 𝐴 𝐵 = 9 

b)  29 

c)  29  

d)  27 

e)  
9
5

 

f)  
9
7

+ 9
8

+ 9
9

 

Ex 5.1: (3) 



Ex 5.1: (6) 



Ex 5.1: (8) 



 23 𝐵 = 4096 ⟹ 3 𝐵 = 12 ⟹ 𝐵 = 4. 

Ex 5.1: (12) 



 3 𝐴 = 2187 ⟹ 𝐴 = 7. 

Ex 5.2: (4) 



a) True 

b) False: Let 𝑎 = 1.5. Then 1.5 = 1 ≠ 2 = 1.5  

c) True 

d) False: Let 𝑎 = 1.5. Then − 𝑎 = −2 ≠ −1 = −𝑎  

 

Ex 5.2: (8) 



a) One-to-one. The range is the set of all odd integers. 

b) One-to-one. Range =  𝑄. 

c) Since 𝑓(1) = 𝑓(0), 𝑓 is not one-to-one. The range of 
𝑓 = {0,±6,±24,±60,… } = {𝑛3 − 𝑛|𝑛 ∈ ℤ}. 

d) One-to-one. Range = (0, +∞) = ℝ+. 

e) One-to-one. Range = [−1,1]. 

f) Since 𝑓(
𝜋

4
) = 𝑓(

3𝜋

4
), 𝑓 is not one-to-one. The range of 

𝑓 =  [0,1]. 

 

Ex 5.2: (15) 



 The number of injective (or, one-to-one) functions from 

𝐴 to 𝐵 is (|𝐵|!)/(|𝐵| − 5)! = 6720, and |𝐵| = 8. 

Ex 5.2: (20) 



𝐴(1,3) = 𝐴(0, 𝐴(1,2)) = 𝐴(1,2) + 1 = 𝐴(0, 𝐴(1,1)) + 1 = [𝐴(1,1) + 1] + 1
= 𝐴(1,1) + 2 = 𝐴(0, 𝐴(1,0)) + 2 = [𝐴(1,0) + 1] + 2 = 𝐴(1,0) + 3
= 𝐴(0,1) + 3 = (1 + 1) + 3 = 5 

𝐴(2,3) = 𝐴(1, 𝐴(2,2)) 
𝐴(2,2) = 𝐴(1, 𝐴(2,1)) 
𝐴(2,1) = 𝐴(1, 𝐴(2,0)) = 𝐴(1, 𝐴(1,1)) 
𝐴(1,1) = 𝐴(0, 𝐴(1,0)) = 𝐴(1,0) + 1 = 𝐴(0,1) + 1 = (1 + 1) + 1 = 3 

𝐴(2,1) = 𝐴(1,3) = 𝐴(0, 𝐴(1,2)) = 𝐴(1,2) + 1 = 𝐴(0, 𝐴(1,1))
= [𝐴(1,1) + 1] + 1 = 5 

𝐴(2,2) =  𝐴(1,5) =  𝐴(0, 𝐴(1,4)) =  𝐴(1,4) + 1 =  𝐴(0, 𝐴(1,3)) + 1
=  𝐴(1,3) + 2 =  𝐴(0, 𝐴(1,2)) + 2 =  𝐴(1,2) + 3 =  𝐴(0, 𝐴(1,1)) + 3
=  𝐴(1,1) + 4 = 7 

𝐴(2,3) = 𝐴(1,7) =  𝐴(0, 𝐴(1,6)) =  𝐴(1,6) + 1 =  𝐴(0, 𝐴(1,5)) + 1
=  𝐴(0,7) + 1 = (7 + 1) + 1 = 9 

 

 

 

Ex 5.2: (27.a) 



Since 𝐴 1,0 = 𝐴 0,1 = 2 = 0 + 2, the result holds for 

the case where 𝑛 = 0. Assuming the truth of the (open) 

statement for some 𝑘 (≥ 0) we have 𝐴(1, 𝑘) = 𝑘 + 2. 

Then we find that 𝐴(1, 𝑘 + 1) =  𝐴(0, 𝐴(1, 𝑘)) =
𝐴(1, 𝑘) + 1 = (𝑘 + 2) + 1 = (𝑘 + 1) + 2, so the truth at 

𝑛 = 𝑘 implies the truth at 𝑛 = 𝑘 + 1. Consequentiy, 

𝐴(1, 𝑛) = 𝑛 +  2 for all 𝑛 ∈ N by the Principle of 

Mathematical Induction. 

Ex 5.2: (27.b) 



Here we find that 𝐴(2,0) = 𝐴(1,1) = 1 +  2 = 3 (by the 
result in part(b)). So 𝐴 2,0 = 3 +  2 ⋅ 0 and the given 
(open) statement is true in this first case. Next we assume 
the result true for some 𝑘(≥ 0) - that is, we assume that 
𝐴(2, 𝑘) = 3 + 2𝑘. For 𝑘 +  1 we then find that 
𝐴(2, 𝑘 + 1) = 𝐴(1, 𝐴(2, 𝑘)) = 𝐴(2, 𝑘) +  2 (by part 
(b))= (3 + 2𝑘) + 2 (by the induction hypothesis)= 3 +
2(𝑘 +  1). Consequently, for all 𝑛 ∈ N, 𝐴(2, 𝑛) = 3 + 2𝑛 
- by the Principle of Mathematical Induction. 

Ex 5.2: (27.c) 



Once again we consider what happens for n=0. Since 
𝐴(3,0) = 𝐴(2,1) = 3 + 2(1) (by part (c)) = 5 = 20+3 − 3, the 
result holds in this first case. So now we assume the given (open) 
statement is true for some 𝑘 (≥ 0) and this gives us the 
induction hypothesis: 𝐴(3, 𝑘) = 2𝑘+3 − 3. For 𝑛 = 𝑘 + 1 it 
then follows that 𝐴(3, 𝑘 + 1) = 𝐴(2, 𝐴(3, 𝑘)) =  3 +
2𝐴(3, 𝑘) (by part (c))= 3 + 2(2𝑘+3 − 3) (by the induction 

hypothesis)= 2 𝑘+1 +3 − 3, so the result holds for 𝑛 = 𝑘 + 1 
whenever it does for 𝑛 = 𝑘. Therefore, 𝐴(3, 𝑛)  =  2^(𝑛 +
3) − 3, for all 𝑛 ∈ N - by the Principle of Mathematical 
Induction. 

Ex 5.2: (27.d) 



  𝐿𝑒𝑡 𝐴 = {1,2,3,4}, 𝐵 = {𝑣, 𝑤, 𝑥, 𝑦, 𝑧}: 

a)  𝑓 = {(1, 𝑣), (2, 𝑣), (3,𝑤), (4, 𝑥)} 

b)  𝑓 = {(1, 𝑣), (2, 𝑥), (3, 𝑦), (4, 𝑧)} 

c)  𝐿𝑒𝑡 𝐴 = 1,2,3,4,5 , 𝐵 = 𝑤, 𝑥, 𝑦, 𝑧 ,  
 𝑓 = {(1,𝑤), (2, 𝑤), (3, 𝑥), (4, 𝑦), (5, 𝑧)}. 

d)  𝐿𝑒𝑡 𝐴 = 1,2,3,4 , 𝐵 = 𝑤, 𝑥, 𝑦, 𝑧 ,  
 𝑓 = {(1,𝑤), (2, 𝑥), (3, 𝑦), (4, 𝑧)} 

 

 

 

Ex 5.3: (1) 



a) 64;
6!

2!
; 0 

b) 46; 4! 𝑆 6,4 ; 0 

Ex 5.3: (4) 



 Let 𝐴 be the set of compounds and 𝐵 the set of assistants. 

Then the number of assignments with no idle assistants 

is the number of onto functions from set 𝐴 to set 𝐵. 

There are 5! 𝑆(9,5) such functions. 

Ex 5.3: (8) 



a) Since 31,100,905 = 5 ×  11 ×  17 × 29 × 31 × 37, we 

find that there are 𝑆(6,3) = 90 unordered factorizations of 

31,100,905 into three factors - each greater than 1.  

b) If the order of the factors in part (a) is considered relevant 

then there are (3!)𝑆(6,3) = 540 such factorizations.  

c)   𝑆(6, 𝑖)6
𝑖=2 = 𝑆 6,2 + 𝑆 6,3 + 𝑆 6,4 + 𝑆 6,5 +

𝑆(6,6) = 202 

d)   (𝑖!)𝑆(6, 𝑖)6
𝑖=2 = (2!)𝑆(6,2) + (3!)𝑆(6,3) + (4!)𝑆(6,4) +

(5!)𝑆(6,5) + (6!)𝑆(6,6) = 4682 

Ex 5.3: (12) 



a) (i) 10!  
(ii) The given outcome - namely, {𝐶2, 𝐶3, 𝐶7}, {𝐶1, 𝐶4, 𝐶9, 𝐶10}, {𝐶5}, {𝐶6, 𝐶8} - 
is an example of a distribution of ten distinct objects among four distinct 
containers, with no container left empty. [Or it is an example of an onto 
function 𝑓: 𝐴 → 𝐵 where 𝐴 = {𝐶1, 𝐶2, … , 𝐶10} and 𝐵 =  {1,2,3,4}.] There are 
4! 𝑆(10,4) such distributions [or functions].  
The answer to the question is  𝑖! 𝑆(10, 𝑖)10

𝑖=1 .  
(iii) 

10
3

 𝑖! 𝑆(7, 𝑖)7
𝑖=1 . 

b)  
9
2

 𝑖! 𝑆(7, 𝑖)7
𝑖=1 . 

c) For 0 ≤ k ≤ 9, the number of outcomes where 𝐶3 is tied for first place with k 
other candidates is 

9
𝑘

 𝑖! 𝑆(9 − 𝑘, 𝑖)9−𝑘
𝑖=1 . [Part (b) above is the special case 

where 𝑘 =  3 − 1 =  2.] Summing over the possible values of 𝑘 we have the 
answer  9

𝑘
 𝑖! 𝑆(9 − 𝑘, 𝑖)9−𝑘

𝑖=1
9
𝑘=0  

Ex 5.3: (16) 



 Here we find, for example, that 

𝑓(𝑓(𝑎, 𝑏), 𝑐) = 𝑓(𝑎, 𝑐) = 𝑐, while 

𝑓(𝑎, 𝑓(𝑏, 𝑐)) = 𝑓(𝑎, 𝑏) = 𝑎, so f is not associative. 

Ex 5.4: (1) 



a) For all 𝑎, 𝑏 ∈ R, 𝑓(𝑎, 𝑏) = 𝑎 + 𝑏 = 𝑏 + 𝑎 = 𝑓(𝑏, 𝑎), because 
the real numbers are commutative under addition. Hence f is a 
commutative (closed) binary operation.  

b) This binary operation is not associative. For example, 
𝑓 𝑓 3.2, 4.7 , 6.4 =  𝑓 3.2 + 4.7 , 6.4 =  𝑓 7.9 , 6.4  
=  𝑓(8, 6.4)  = 8 + 6.4  = 14.4 =  15, while,  

𝑓 3.2, 𝑓 4.7,6.4 = 𝑓 3.2, 4.7 + 6.4 =  𝑓 3.2, 11.1  
= 𝑓(3.2, 12)  = 3.2 + 12 = 15.2 = 16 . 

c) There is no identity element. If 𝑎 ∈ R − 𝑍 then for any 𝑏 ∈ R, 
𝑎 + 𝑏 ∈ Z. So if 𝑥 were the identity element we would have 
𝑎 =  𝑓(𝑎, 𝑥)  =  𝑎 +  𝑥  with 𝑎 ∈ R − 𝑍 and 𝑎 + 𝑥 ∈ Z 

Ex 5.4: (2) 



a)  25 

b)  525  

c)  525 

d)  510 

Ex 5.4: (5) 



 Each element in A is of the form 2𝑖 for some 1 ≤ i ≤ 5, 

and gcd (2𝑖 , 25) = 2𝑖 = gcd (25, 2𝑖),  so 25 = 32 is the 

identity element for 𝑓. 

Ex 5.4: (8) 



a)  𝜋𝐴 𝐷 = 0,+∞ ; 𝜋𝐵 𝐷 = 𝑅 

b)  𝜋𝐴 𝐷 = 𝑅; 𝜋𝐵 𝐷 = [−1,1] 

c)  𝜋𝐴 𝐷 = −1,1 ; 𝜋𝐵 𝐷 = [−1,1] 

Ex 5.4: (12) 



 The result follows by the Pigeonhole Principle where the 

eight people are the pigeons and the pigeonholcs are the 

seven days of the week. 

Ex 5.5: (2) 



 Any selection of size 101 from S must contain two 

consecutive integers 𝑛, 𝑛 +  1 and gcd (𝑛, 𝑛 + 1)  =  1. 

Ex 5.5: (6) 



 Consider the subsets 𝐴 of 𝑆 where 1 ≤ 𝐴 ≤ 3. Since 

|𝑆| = 5, there are 
5
1

+ 5
2

+ 5
3

= 25 such subsets 𝐴. 

Let 𝑠𝐴 denote the sum of the elements in 𝐴. Then 

1 ≤ s𝐴 ≤ 7 +  8 +  9 =  24. So by the Pigeonhole 

Principle, there are two subsets of S whose elements 

yield the same sum. 

Ex 5.5: (13) 



 For 1 ≤ i ≤ 42, let 𝑥𝑖 count the total number of resumés 

Brace has sent out from the start of his senior year to the 

end of the i-th day. Then 1 ≤ x1 < 𝑥2 < ⋯ < 𝑥42 ≤ 60, 

and 𝑥1 + 23 <  𝑥2 + 23 <  … < 𝑥42 + 23 ≤ 83. We 

have 42 distinct numbers 𝑥1, 𝑥2, … , 𝑥42, and 42 other 

distinct numbers 𝑥1 + 23, 𝑥2 + 23, . . . , 𝑥42 +  23, all 

between 1 and 83 inclusive. By the Pigeonhole Principle 

𝑥𝑖 = 𝑥𝑗 + 23 for some 1 ≤ j < 𝑖 ≤ 42; 𝑥𝑖 − 𝑥𝑗 = 23. 

Ex 5.5: (14) 



a)  𝑓 ∘ 𝑔 𝑥 = 3𝑥 − 1; 𝑔 ∘ 𝑓 𝑥 = 3 𝑥 − 1 ; 

𝑔 ∘ ℎ 𝑥 =  
  0, 𝑥 𝑒𝑣𝑒𝑛
3, 𝑥 𝑜𝑑𝑑

; ℎ ∘ 𝑔 𝑥 =  
0, 𝑥 𝑒𝑣𝑒𝑛
1, 𝑥 𝑜𝑑𝑑

 

𝑓 ∘ 𝑔 ∘ ℎ 𝑥 = 𝑓 𝑔 ∘ ℎ 𝑥 =  
−1, 𝑥 𝑒𝑣𝑒𝑛
2, 𝑥 𝑜𝑑𝑑

 

𝑓 ∘ 𝑔 ∘ ℎ 𝑥 =  
𝑓 ∘ 𝑔 0 , 𝑥 𝑒𝑣𝑒𝑛

𝑓 ∘ 𝑔 1 , 𝑥 𝑜𝑑𝑑
=  

−1, 𝑥 𝑒𝑣𝑒𝑛
2, 𝑥 𝑜𝑑𝑑

 

b)  𝑓2 𝑥 = 𝑓 𝑓 𝑥 = 𝑥 − 2; 𝑓3 𝑥 = 𝑥 − 3; 
𝑔2 𝑥 = 9𝑥; 𝑔3 𝑥 = 27𝑥; ℎ2 = ℎ3 = ℎ500 = ℎ 

Ex 5.6: (7) 



a)  𝑓−1 = 𝑥, 𝑦 2𝑦 + 3𝑥 = 7  

b)  𝑓−1 = {(𝑥, 𝑦)|𝑎𝑦 + 𝑏𝑥 = 𝑐, 𝑏 ≠ 0, 𝑎 ≠ 0} 

c)  𝑓−1 = 𝑥, 𝑦 𝑦 = 𝑥
1

3 = 𝑥, 𝑦 𝑥 = 𝑦3  

d)  Here 𝑓 0 = 𝑓 −1 = 0, so f is not one-to-one, and 

consequently f is not invertible. 

Ex 5.6: (10) 



a)  [0,2) 

b)  [−1,2) 

c)  [0,1) 

d)  [0,2) 

e)  [−1,3) 

f)  [−1,0) ∪ [2,4) 

Ex 5.6: (16) 



a) The range of 𝑓 = {2,3,4,… } = 𝑍+ − {1}. 

b) Since 1 is not in the range of 𝑓. The function is not onto. 

c) For all 𝑥, 𝑦 ∈ Z+, 𝑓(𝑥) = 𝑓(𝑦) ⇒ 𝑥 + 1 = 𝑦 + 1 ⇒ 𝑥 = 𝑦, 

so 𝑓 is one-to-one. 

d) The range of 𝑔 is 𝑍+. 

e) Since 𝑔(𝑍+) = 𝑍+, the codomain of 𝑔, this function is onto. 

f) Here 𝑔(1) = 1 = 𝑔(2), and 1 ≠ 2, so g is not one-to-one. 

g) For all 𝑥 ∈ Z+, 𝑔 ∘ f 𝑥 = 𝑔 𝑓 𝑥 = 𝑔 𝑥 + 1 =

max 1, 𝑥 + 1 − 1 = max 1, 𝑥 = 𝑥, 𝑠𝑖𝑛𝑐𝑒 𝑥 ∈
Z+. Hence 𝑔 ∘ f = 1𝑍+. 

Ex 5.6: (17.a~17.g) 



h)  𝑓 ∘ g 2 = 𝑓 max 1,1 = 𝑓 1 = 1 + 1 =2 
𝑓 ∘ g 3 = 𝑓 max 1,2 = 𝑓 2 = 2 + 1 =3 
𝑓 ∘ g 4 = 𝑓 max 1,3 = 𝑓 3 = 3 + 1 =4 
𝑓 ∘ g 7 = 𝑓 max 1,6 = 𝑓 6 = 6 + 1 =7 
𝑓 ∘ g 12 = 𝑓 max 1,11 = 𝑓 11 = 11 + 1 =12 

(𝑓 ∘ g)(25) = 𝑓(max {1,24}) = 𝑓(24) = 24 + 1 =25 

i) No, because the functions 𝑓, 𝑔  are not inverses of each other. 
The calculations in part (h) may suggest that 𝑓 ∘ g =
1𝑍+  since 𝑓 ∘ g 𝑥 = 𝑥 𝑓𝑜𝑟 𝑥 ≥ 2. But we also find that 
(𝑓 ∘ g)(1) = 𝑓(max {1,0}) = 𝑓(1) = 2, so 𝑓 ∘ g 1 ≠ 1, 
and, consequently,𝑓 ∘ g ≠ 1Z+ . 
 

 

Ex 5.6: (17.h & 17.i) 



• It follows from Theorem 5.11 that there are 5! Invertible 

functions 𝑓: 𝐴 → 𝐵. 

Ex 5.6: (22) 


