Solution

Ex 5.1: 1, 3, 6, 8, 12

Ex 5.2: 4, 8, 15, 20, 27

Ex 5.3: 1, 4, 8, 12, 16

Ex 5.4: 1, 2, 5, 8, 12

Ex 5.5: 2, 6, 13, 14, 20

5.6: 7, 10, 16, 17, 22

Ex 5.1: (1)

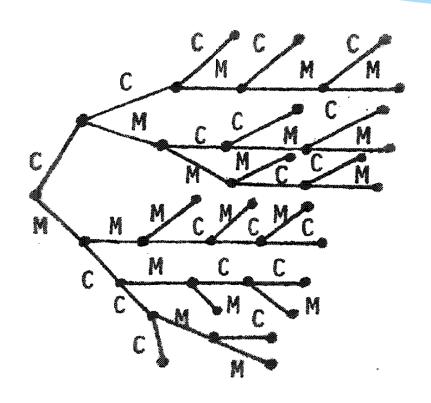
```
* A \times B =
  \{(1,2),(2,2),(3,2),(4,2),(1,5),(2,5),(3,5),(4.5)\}
* B × A:
  \{(2.1), (2.2), (2.3), (2,4), (5,1), (5,2), (5,3), (5,4)\}
* A \cup (B \times C) =
  \{1,2,3,4,(2,3),(2,4),(2,7),(5,3),(5,4),(5,7)\}
* (A \cup B) \times C = (A \times C) \cup (B \times C) =
              \{(1,3),(2,3),(3,3),(4,3),(5,3),
              (1,4), (2,4), (3,4), (4,4), (5,4),
              (1,7), (2,7), (3,7), (4,7), (5,7)
```

Ex 5.1: (3)

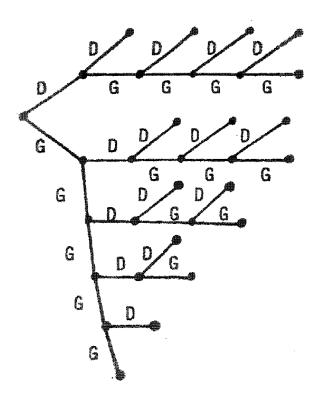
a)
$$|A \times B| = |A||B| = 9$$

- b) 2⁹
- c) 2⁹
- d) 2⁷
- e) $\binom{9}{5}$
- f) $\binom{9}{7} + \binom{9}{8} + \binom{9}{9}$

Ex 5.1: (6)



Ex 5.1: (8)



Ex 5.1: (12)

*
$$2^{3|B|} = 4096 \implies 3|B| = 12 \implies |B| = 4.$$

Ex 5.2: (4)

*
$$3^{|A|} = 2187 \Longrightarrow |A| = 7$$
.

Ex 5.2: (8)

- a) True
- b) False: Let a = 1.5. Then $\lfloor 1.5 \rfloor = 1 \neq 2 = \lceil 1.5 \rceil$
- c) True
- d) False: Let a = 1.5. Then $-[a] = -2 \neq -1 = [-a]$

Ex 5.2: (15)

- a) One-to-one. The range is the set of all odd integers.
- b) One-to-one. Range = Q.
- c) Since f(1) = f(0), f is not one-to-one. The range of $f = \{0, \pm 6, \pm 24, \pm 60, ...\} = \{n^3 n | n \in \mathbb{Z}\}.$
- d) One-to-one. Range = $(0, +\infty) = \mathbb{R}^+$.
- e) One-to-one. Range = [-1,1].
- f) Since $f(\frac{\pi}{4}) = f(\frac{3\pi}{4})$, f is not one-to-one. The range of f = [0,1].

Ex 5.2: (20)

* The number of injective (or, one-to-one) functions from A to B is (|B|!)/(|B|-5)!=6720, and |B|=8.

Ex 5.2: (27.a)

$$A(1,3) = A(0,A(1,2)) = A(1,2) + 1 = A(0,A(1,1)) + 1 = [A(1,1) + 1] + 1$$

$$= A(1,1) + 2 = A(0,A(1,0)) + 2 = [A(1,0) + 1] + 2 = A(1,0) + 3$$

$$= A(0,1) + 3 = (1+1) + 3 = 5$$

$$A(2,3) = A(1,A(2,2))$$

$$A(2,2) = A(1,A(2,1))$$

$$A(2,1) = A(1,A(2,0)) = A(1,A(1,1))$$

$$A(1,1) = A(0,A(1,0)) = A(1,0) + 1 = A(0,1) + 1 = (1+1) + 1 = 3$$

$$A(2,1) = A(1,3) = A(0,A(1,2)) = A(1,2) + 1 = A(0,A(1,1))$$

$$= [A(1,1) + 1] + 1 = 5$$

$$A(2,2) = A(1,5) = A(0,A(1,4)) = A(1,4) + 1 = A(0,A(1,3)) + 1$$

$$= A(1,3) + 2 = A(0,A(1,2)) + 2 = A(1,2) + 3 = A(0,A(1,1)) + 3$$

$$= A(1,1) + 4 = 7$$

$$A(2,3) = A(1,7) = A(0,A(1,6)) = A(1,6) + 1 = A(0,A(1,5)) + 1$$

$$= A(0,7) + 1 = (7+1) + 1 = 9$$

Ex 5.2: (27.b)

Since A(1,0) = A(0,1) = 2 = 0 + 2, the result holds for the case where n = 0. Assuming the truth of the (open) statement for some $k \ge 0$ we have A(1,k) = k + 2. Then we find that A(1,k+1) = A(0,A(1,k)) = A(1,k) + 1 = (k+2) + 1 = (k+1) + 2, so the truth at n = k implies the truth at n = k + 1. Consequently, A(1,n) = n + 2 for all $n \in \mathbb{N}$ by the Principle of Mathematical Induction.

Ex 5.2: (27.c)

Here we find that A(2,0) = A(1,1) = 1 + 2 = 3 (by the result in part(b)). So $A(2,0) = 3 + 2 \cdot 0$ and the given (open) statement is true in this first case. Next we assume the result true for some $k(\geq 0)$ - that is, we assume that A(2,k) = 3 + 2k. For k + 1 we then find that A(2,k+1) = A(1,A(2,k)) = A(2,k) + 2 (by part (b))= (3+2k) + 2 (by the induction hypothesis)= 3 + 2(k+1). Consequently, for all $n \in \mathbb{N}$, A(2,n) = 3 + 2n - by the Principle of Mathematical Induction.

Ex 5.2: (27.d)

Once again we consider what happens for n=0. Since A(3,0) = A(2,1) = 3 + 2(1) (by part (c)) = $5 = 2^{0+3} - 3$, the result holds in this first case. So now we assume the given (open) statement is true for some $k \ge 0$ and this gives us the induction hypothesis: $A(3,k) = 2^{k+3} - 3$. For n = k+1 it then follows that A(3,k+1) = A(2,A(3,k)) = 3 + 2A(3,k) (by part (c)) = $3 + 2(2^{k+3} - 3)$ (by the induction hypothesis) = $2^{(k+1)+3} - 3$, so the result holds for n = k+1 whenever it does for n = k. Therefore, $A(3,n) = 2^n(n+3) - 3$, for all $n \in \mathbb{N}$ - by the Principle of Mathematical Induction.

Ex 5.3: (1)

* Let A = {1,2,3,4}, B = {v,w,x,y,z}:
a) f = {(1,v), (2,v), (3,w), (4,x)}
b) f = {(1,v), (2,x), (3,y), (4,z)}
c) Let A = {1,2,3,4,5}, B = {w,x,y,z}, f = {(1,w), (2,w), (3,x), (4,y), (5,z)}.
d) Let A = {1,2,3,4}, B = {w,x,y,z}, f = {(1,w), (2,x), (3,y), (4,z)}

Ex 5.3: (4)

a)
$$6^4$$
; $\frac{6!}{2!}$; 0

b)
$$4^6$$
; $(4!)S(6,4)$; 0

Ex 5.3: (8)

* Let A be the set of compounds and B the set of assistants. Then the number of assignments with no idle assistants is the number of onto functions from set A to set B. There are 5! S(9,5) such functions.

Ex 5.3: (12)

- a) Since $31,100,905 = 5 \times 11 \times 17 \times 29 \times 31 \times 37$, we find that there are S(6,3) = 90 unordered factorizations of 31,100,905 into three factors each greater than 1.
- b) If the order of the factors in part (a) is considered relevant then there are (3!)S(6,3) = 540 such factorizations.
- c) $\sum_{i=2}^{6} S(6,i) = S(6,2) + S(6,3) + S(6,4) + S(6,5) + S(6,6) = 202$
- d) $\sum_{i=2}^{6} (i!)S(6,i) = (2!)S(6,2) + (3!)S(6,3) + (4!)S(6,4) + (5!)S(6,5) + (6!)S(6,6) = 4682$

Ex 5.3: (16)

- a) (i) 10! (ii) The given outcome namely, $\{C_2, C_3, C_7\}$, $\{C_1, C_4, C_9, C_{10}\}$, $\{C_5\}$, $\{C_6, C_8\}$ is an example of a distribution of ten distinct objects among four distinct containers, with no container left empty. [Or it is an example of an onto function $f: A \to B$ where $A = \{C_1, C_2, ..., C_{10}\}$ and $B = \{1,2,3,4\}$.] There are 4! S(10,4) such distributions [or functions]. The answer to the question is $\sum_{i=1}^{10} i! S(10,i)$. (iii) $\binom{10}{3} \sum_{i=1}^{7} i! S(7,i)$.
- b) $\binom{9}{2} \sum_{i=1}^{7} i! S(7, i)$.
- For $0 \le k \le 9$, the number of outcomes where C_3 is tied for first place with k other candidates is $\binom{9}{k} \sum_{i=1}^{9-k} i! S(9-k,i)$. [Part (b) above is the special case where k=3-1=2.] Summing over the possible values of k we have the answer $\sum_{k=0}^{9} \binom{9}{k} \sum_{i=1}^{9-k} i! S(9-k,i)$

Ex 5.4: (1)

* Here we find, for example, that f(f(a,b),c) = f(a,c) = c, while f(a,f(b,c)) = f(a,b) = a, so f is not associative.

Ex 5.4: (2)

- a) For all $a, b \in \mathbb{R}$, f(a, b) = [a + b] = [b + a] = f(b, a), because the real numbers are commutative under addition. Hence f is a commutative (closed) binary operation.
- b) This binary operation is not associative. For example, f(f(3.2, 4.7), 6.4) = f([3.2 + 4.7], 6.4) = f([7.9], 6.4)= f(8, 6.4) = [8 + 6.4] = [14.4] = 15, while, f(3.2, f(4.7, 6.4)) = f(3.2, [4.7 + 6.4]) = f(3.2, [11.1])= f(3.2, 12) = [3.2 + 12] = [15.2] = 16.
- There is no identity element. If $a \in R Z$ then for any $b \in R$, $[a + b] \in Z$. So if x were the identity element we would have a = f(a, x) = [a + x] with $a \in R Z$ and $[a + x] \in Z$

Ex 5.4: (5)

- a) 25
- b) 5²⁵
- c) 5^{25}
- d) 5¹⁰

Ex 5.4: (8)

* Each element in A is of the form 2^i for some $1 \le i \le 5$, and $gcd(2^i, 2^5) = 2^i = gcd(2^5, 2^i)$, so $2^5 = 32$ is the identity element for f.

Ex 5.4: (12)

a)
$$\pi_A(D) = [0, +\infty); \ \pi_B(D) = R$$

b)
$$\pi_A(D) = R$$
; $\pi_B(D) = [-1,1]$

c)
$$\pi_A(D) = [-1,1]; \pi_B(D) = [-1,1]$$

Ex 5.5: (2)

* The result follows by the Pigeonhole Principle where the eight people are the pigeons and the pigeonholes are the seven days of the week.

Ex 5.5: (6)

* Any selection of size 101 from S must contain two consecutive integers n, n + 1 and gcd(n, n + 1) = 1.

Ex 5.5: (13)

* Consider the subsets A of S where $1 \le |A| \le 3$. Since |S| = 5, there are $\binom{5}{1} + \binom{5}{2} + \binom{5}{3} = 25$ such subsets A. Let s_A denote the sum of the elements in A. Then $1 \le s_A \le 7 + 8 + 9 = 24$. So by the Pigeonhole Principle, there are two subsets of S whose elements yield the same sum.

Ex 5.5: (14)

* For $1 \le i \le 42$, let x_i count the total number of resumés Brace has sent out from the start of his senior year to the end of the i-th day. Then $1 \le x_1 < x_2 < \dots < x_{42} \le 60$, and $x_1 + 23 < x_2 + 23 < \dots < x_{42} + 23 \le 83$. We have 42 distinct numbers x_1, x_2, \dots, x_{42} , and 42 other distinct numbers $x_1 + 23, x_2 + 23, \dots, x_{42} + 23$, all between 1 and 83 inclusive. By the Pigeonhole Principle $x_i = x_j + 23$ for some $1 \le j < i \le 42$; $x_i - x_j = 23$.

Ex 5.6: (7)

a)
$$(f \circ g)(x) = 3x - 1; (g \circ f)(x) = 3(x - 1);$$

 $(g \circ h)(x) = \begin{cases} 0, x \text{ even} \\ 3, x \text{ odd} \end{cases}; (h \circ g)(x) = \begin{cases} 0, x \text{ even} \\ 1, x \text{ odd} \end{cases}$
 $(f \circ (g \circ h))(x) = f((g \circ h)(x)) = \begin{cases} -1, x \text{ even} \\ 2, x \text{ odd} \end{cases}$
 $((f \circ g) \circ h)(x) = \begin{cases} (f \circ g)(0), x \text{ even} \\ (f \circ g)(1), x \text{ odd} \end{cases} = \begin{cases} -1, x \text{ even} \\ 2, x \text{ odd} \end{cases}$
b) $f^{2}(x) = f(f(x)) = x - 2; f^{3}(x) = x - 3;$
 $g^{2}(x) = 9x; g^{3}(x) = 27x; h^{2} = h^{3} = h^{500} = h$

Ex 5.6: (10)

a)
$$f^{-1} = \{(x, y) | 2y + 3x = 7\}$$

b)
$$f^{-1} = \{(x, y) | ay + bx = c, b \neq 0, a \neq 0\}$$

c)
$$f^{-1} = \{(x,y) | y = x^{\frac{1}{3}} \} = \{(x,y) | x = y^3 \}$$

d) Here f(0) = f(-1) = 0, so f is not one-to-one, and consequently f is not invertible.

Ex 5.6: (16)

- a) [0,2)
- b) [-1,2)
- c) [0,1)
- d) [0,2)
- e) [-1,3)
- f) $[-1,0) \cup [2,4)$

Ex 5.6: (17.a~17.g)

- a) The range of $f = \{2,3,4,...\} = Z^+ \{1\}$.
- b) Since 1 is not in the range of f. The function is not onto.
- c) For all $x, y \in \mathbb{Z}^+$, $f(x) = f(y) \Rightarrow x + 1 = y + 1 \Rightarrow x = y$, so f is one-to-one.
- d) The range of g is Z^+ .
- e) Since $g(Z^+) = Z^+$, the codomain of g, this function is onto.
- f) Here g(1) = 1 = g(2), and $1 \neq 2$, so g is not one-to-one.
- g) For all $x \in Z^+$, $(g \circ f)(x) = g(f(x)) = g(x+1) = \max\{1, (x+1) 1\} = \max\{1, x\} = x$, since $x \in Z^+$. Hence $g \circ f = 1_{Z^+}$.

Ex 5.6: (17.h & 17.i)

- h) $(f \circ g)(2) = f(\max\{1,1\}) = f(1) = 1 + 1 = 2$ $(f \circ g)(3) = f(\max\{1,2\}) = f(2) = 2 + 1 = 3$ $(f \circ g)(4) = f(\max\{1,3\}) = f(3) = 3 + 1 = 4$ $(f \circ g)(7) = f(\max\{1,6\}) = f(6) = 6 + 1 = 7$ $(f \circ g)(12) = f(\max\{1,11\}) = f(11) = 11 + 1 = 12$ $(f \circ g)(25) = f(\max\{1,24\}) = f(24) = 24 + 1 = 25$
- No, because the functions f, g are not inverses of each other. The calculations in part (h) may suggest that $f \circ g = 1_{Z^+}$ since $(f \circ g)(x) = x$ for $x \ge 2$. But we also find that $(f \circ g)(1) = f(\max\{1,0\}) = f(1) = 2$, so $(f \circ g)(1) \ne 1$, and, consequently, $f \circ g \ne 1_{Z^+}$.

Ex 5.6: (22)

• It follows from Theorem 5.11 that there are 5! Invertible functions $f: A \rightarrow B$.