
Matlab	1:	User	Interface	

Cheng-Hsin	Hsu	
Na#onal	Tsing	Hua	University	

Department	of	Computer	Science	
	

Slides	are	based	on	the	materials	from	Prof.	Roger	Jang		
	

CS3330	Scien?fic	Compu?ng	 1	

What	is	Matlab	

•  Matlab	stands	for	MATrix	LABoratory	
•  It	was	first	released	by	Mathworks	in	1984	
•  A	programming	language	for	
– Matrix	manipula?ons	
– PloOng	for	visualiza?on	
–  Implementa?on	of	algorithms	
– User	interfaces	
–  Integra?on	with	other	languages,	including	C/C++,	
Java,	Python,	and	Fortran	

CS3330	Scien?fic	Compu?ng	 2	

History	of	Matlab	
•  Prof.	Cleve	Moler,	at	University	of	New	
Mexico,	started	developing	Matlab	in	1980’s	

•  Goal	was	to	allow	people	to	use	LINPACK	and	
EISPACK	without	knowing	Fortran	

CS3330	Scien?fic	Compu?ng	 3	
The authors of LINPACK:
Jack Dongarra, Cleve Moler, Pete Stewart, and Jim Bunch in 1978.

Cleve Moler

Commercializa?on	

•  John	Li]le	rewrote	Matlab	in	C	and	funded	
Mathworks	in	1984	

•  Switch	to	LAPCK	in	2000	
•  Huge	community,	check	Mathwork	Central	

CS3330	Scien?fic	Compu?ng	 4	

Jack Little

Evolu?on	of	Matlab	

•  Matlab	is	the	domina?ng	numerical	
compu?ng	environment,	and	can	be	extended	
for	symbolic	compu?ng		

•  Ini?ally	designed	for	matrix	computa?on	
– Version	4	introduces	graphic	handles	
– Version	5	different	data	types/arrays	

•  Core	matlab	can	be	extended	by	various	
toolboxes	ß	sold	separately		

CS3330	Scien?fic	Compu?ng	 5	

Simulink	and	Staalow	

•  Simulink:	discrete-	or	con?nuous-?me	
dynamic	systems	
•  Stateflow:	finite-state	machines	and	event-
driven	systems	

	

CS3330	Scien?fic	Compu?ng	 6	

Matlab,	Simulink,	and	Stateflow	

•  Combining	them	allow	us	to	carry	out	diverse	
tasks,	ranging	from	complex	system	
simula?ons	to	integrated-circuit	design	

CS3330	Scien?fic	Compu?ng	 7	

MATLAB Toolboxes Compiler

Simulink

Stateflow

Blocksets RTW

Coder

Appearance	of	Matlab	
•  Matlab	8.5	(2015a)	was	released	in	Mar	2015	
•  Use	spolight	to	launch	it,	or	find	it	in	Finder	à	
Applica?ons	

CS3330	Scien?fic	Compu?ng	 8	

Windows	and	Layout	

CS3330	Scien?fic	Compu?ng	 9	

Command	Window	
Where	you	type	commands	

Workshop	
Show	all	the	variables	

Current	Folder	
Show	files	

Matlab	Commands	for	Fun	

•  Similar	to	SageMath,	you	type	commands	in	
the	command	window,	and	will	get	immediate	
responses	

•  Try		
– version	
– ver	ß	What	is	the	difference	from	version?	
– bench		

CS3330	Scien?fic	Compu?ng	 10	

Arithme?c	Opera?ons	and	Variables	

•  Ajer	the	prompt	(>>),	type	math	formula	and	press	
enter	
>>	(5	*	3.5)	/	pi	
ans	=	5.5704							ß	a	buil?n	variable,	see	workspace	

•  Use	equal	(=)	to	create	or	update	a	variable	
>>	x=3/5	
x	=	0.6000	
>>	

•  Add	a	semicolon	(;)	at	the	end	of	each	line	to	supress	
the	answer	
>>	y=4/6;	
>>		

CS3330	Scien?fic	Compu?ng	 11	

Naming	Policy	of	Variable	

•  The	first	character	must	be	an	English	le]er,	
followed	by	le]ers,	numbers,	or	underscore	

•  The	variable	names	must	be	<	64	characters	ß	
truncated	if	otherwise	

•  Variables	are	used	without	declara?on,	and	by	
default	they	are	8-byte	double	

>> whos x
 Name Size Bytes Class Attributes
 x 1x1 8 double

CS3330	Scien?fic	Compu?ng	 12	

Comments	
function y = mean(x,dim,flag,flag2)
%MEAN Average or mean value.
% S = MEAN(X) is the mean value of the
elements in X if X is a vector.
% For matrices, S is a row vector containing
the mean value of each
% column.
% For N-D arrays, S is the mean value of the
elements along the first
% array dimension whose size does not equal 1.
%
.....

CS3330	Scien?fic	Compu?ng	 13	

Vectors	and	Matrices	

•  Variables	can	also	be	vectors	and	matrices	
	
>> s = [1, 2, 3, 5];

>> s * 2.5 / 12

ans = 0.2083 0.4167 0.6250 1.0417

CS3330	Scien?fic	Compu?ng	 14	

Matrix	Opera?ons	

•  Update	a	matrix	element	
•  Append	one	more	element	
•  Delete	an	element	

>> s(2)=999
s = 1 999 3 5
>> s(5)=123
s = 1 999 3 5 123
>> s(2)=[]
s = 1 3 5 123

CS3330	Scien?fic	Compu?ng	 15	

2-Dimensional	Arrays	

•  To	create	a	2-D	array,	add	a	semicolon	(;)	ajer	
each	row	

>> a = [1, 2, 3; 4, 5, 6]

a =

 1 2 3
 4 5 6

CS3330	Scien?fic	Compu?ng	 16	

2-Dimensional	Array	Opera?ons	

•  Update	a	specific	array	element	
>> a(2, 1)

ans = 4

>> a(2,1)=999
a = 1 2 3

 999 5 6

•  Store	a	row	of	an	exis?ng	array	and	store	it	in	
a	different	variable	

>> b = a(2,1:3)

b = 999 5 6

CS3330	Scien?fic	Compu?ng	 17	

2-Dimensional	Array	Opera?ons	
(cont.)	

•  Combine	two	arrays,	no?ce	the	;	
>> c=[a;b*2]
c = 1 2 3
 999 5 6
 1998 10 12

•  Remove	the	second	column,	:	means	whole	
column	(or	row)	

>> c(:,2)=[]
c = 1 3
 999 6
 1998 12

CS3330	Scien?fic	Compu?ng	 18	

2-Dimensional	Array	Opera?ons	
(cont.)	

•  Add	one	more	column	in	an	array	
>> c=[c(1,:), 10; c(2,:), 20; c(3,:), 30]
c = 1 3 10
 999 6 20
 1998 12 30

•  Remove	two	columns	
>> c(:,[1, 3])=[]
c =
 3
 6
 12

	
CS3330	Scien?fic	Compu?ng	 19	

2-Dimensional	Array	Opera?ons	
(cont.)	

•  Transpose	a	matrix	
>> c‘	
ans =

 3 6 12

•  Exercise,	explain	what	does	the	following	
command	do	ß	help	is	your	friend…	

>> a=magic(12); b=a([2 5 3], [1 4])

b = 13 16
 96 93

 25 28

	
CS3330	Scien?fic	Compu?ng	 20	

Popular	Func?ons	
•  Figure	out	what	do	the	func?ons	do	
–  abs(x)	
–  sin(x)	
–  exp(x)	
–  log(x)	
–  min(x)	
–  max(x)	
–  sort(x)	
–  sum(x)	
–  mean(x)	

•  Pass	a	matrix,	say	magic(5)	into	each	of	the	func?on	
and	figure	out	what	happens	

CS3330	Scien?fic	Compu?ng	 21	

For	Loops	

for	i	=	[vector]	
commands	

end	
•  Each	itera?on,	i	is	assigned	with	a	new	value,	
and	commands	are	executed	

>> for i = [100, 150, 200]
disp(i)
end
 100
 150
 200

CS3330	Scien?fic	Compu?ng	 22	

While	Loops	

While	expression	
commands	

end	
	
	
>> i=0; while i < 3; disp(i); i=i+1;end

 0

 1

 2

CS3330	Scien?fic	Compu?ng	 23	

Condi?onal	Execu?ons	

If	expression	
	commands	

else	
	commands	

end	
	
>> if 100 > 2; disp('true'); else; disp('false'); end
true
>> if 100 < 2; disp('true'); else; disp('false'); end
false

CS3330	Scien?fic	Compu?ng	 24	

M	Files	

•  M	files	are	for	Matlab	
•  There	are	two	kinds	of	M	files:	scripts	and	
func?ons	

•  Scripts:	all	variables	are	stored	in	workspace	
•  Func?ons:	only	input	and	output	variables	are	
connected	to	the	workspace;	other	variables	
are	thrown	away	ajer	execu?ons	

	

CS3330	Scien?fic	Compu?ng	 25	

Script	File	Example	
%	segment	a	bookshelf	picture	into	mul?ple	racks.....	
%	note	that	we	didn't	implement	the	landscape/portrait	modes..	
%	We	save	a	region	for	the	second	phase:	book	segmenta?on	
	
url	=	'file:///Users/cheng-hsinhsu/work/dt/asset/src/image/30724732f03_o.jpg';	
pic	=	imread(url);	
picg	=	rgb2gray(pic);	
	
d_theta	=	10;	%	degree	devia?on	threshold	is	acceptable..	
d_xy	=	50;				%	filter	out	closeby	lines	
	
picedge	=	edge(picg,'canny');	
[pichough,	theta,	rho]	=	hough(picedge);	
peaks	=	houghpeaks(pichough,	100,	'Threshold',	0.5	*	max(pichough(:)));	
lines	=	houghlines(picg,	theta,	rho,	peaks,	'FillGap',	20,	'MinLength',	100);	
…...	

CS3330	Scien?fic	Compu?ng	 26	

Func?on	File	Example	
%	LOWPASSFILTER	-	Constructs	a	low-pass	bu]erworth	filter.	
%	
%	usage:	f	=	lowpassfilter(sze,	cutoff,	n)	
%		
%	The	frequency	origin	of	the	returned	filter	is	at	the	corners.	
%	
%	See	also:	HIGHPASSFILTER,	HIGHBOOSTFILTER,	BANDPASSFILTER	
%	
	
func?on	f	=	lowpassfilter(sze,	cutoff,	n)	
					
				if	cutoff	<	0	|	cutoff	>	0.5	
				error('cutoff	frequency	must	be	between	0	and	0.5');	
				end	
......	

CS3330	Scien?fic	Compu?ng	 27	

Scripts	versus	Func?ons	

•  Scripts	store	all	the	variables	in	workspace	à	
easier	to	check	and	manipulate	their	values	

•  Func?ons	offer	be]er	encapsula?on	à	don’t	
need	to	worry	about	overwri?ng	variables	in	
workspace		

•  Recursive	func?on:	

CS3330	Scien?fic	Compu?ng	 28	

func?on	out=fact02(n)	
	
if	n==1	

	out=1;	
	return	

end	
out=n*fact02(n-1);	

Search	Path	

•  path:	display	the	current	path	seOng	
•  which:	figure	out	where	is	a	specific	func?on	
•  addpath:	add	a	new	path	into	the	search	
paths	

•  rmpath:	remove	a	path	from	the	search	paths		

CS3330	Scien?fic	Compu?ng	 29	

Variables	in	Workspace	

•  who:	list	all	the	variables	in	workspace	
•  whos:	list	details	about	the	variable	in	workspace	
•  clear:	clean	up	the	workspace	variables	
– Default	is	clear	all	variables,	or	you	may	specify	a	
specific	variable	

•  save:	save	variables	into	a	file	
–  save	ß	save	all	variables	to	matlab.mat	binary	file	
–  save	filename	x,	y,	z	ß	save	variables	x,	y,	z	to	
filename.mat	

CS3330	Scien?fic	Compu?ng	 30	

Quit	Matlab		

•  exit	
•  quit	
•  or	just	close	the	window	

CS3330	Scien?fic	Compu?ng	 31	

Matlab	#1	Homework	(M1)	

1.  (2%)	Write	a	one-line	MATLAB	statement	for	
the	following	short	ques?ons:	
–  Change	element	3	of	vector	x	by	mul?plying	it	by	5	
–  Delete	columns	2	and	4	from	matrix	A	
–  Swap	rows	1	and	3	of	matrix	A	
–  Extract	columns	4,	2,	and	5	of	matrix	A	and	assign	

them	to	matrix	B	

CS3330	Scien?fic	Compu?ng	 32	

Matlab	#1	Homework	(M1)	(cont.)	

2.  (1%)	Fibonacci	numbers	are	defined	
recursively	as	follows.	F1=F2=1,	and	Fn=Fn-1+Fn-2	
for	all	integers	n>=3.	Write	a	Matlab	recursive	
func?on	to	calculate	x-th	Fibonacci	number,	
where	x	is	an	input	argument.	Note	that	you	
get	zero	point	if	you	don’t	use	recursion	in	
your	code.	

CS3330	Scien?fic	Compu?ng	 33	

