SageMath 2: Number Theory

Cheng-Hsin Hsu

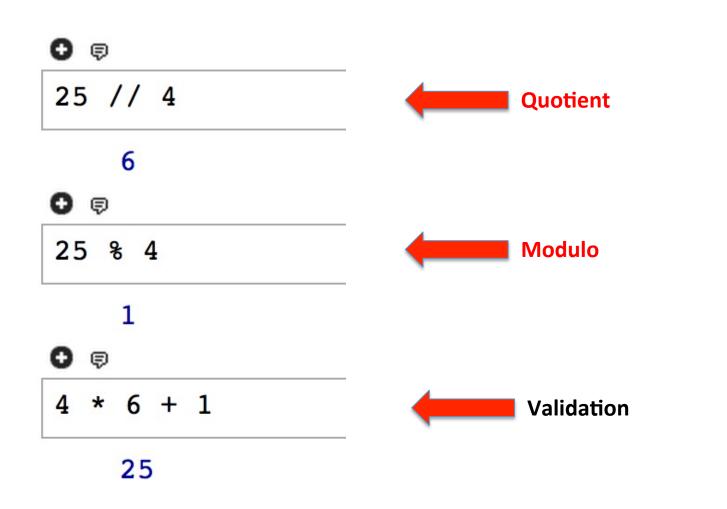
National Tsing Hua University Department of Computer Science

CS3330 Scientific Computing

• Example: $16 \div 3 = 5 \cdots 1$ Dividend Divisor Quotient Remainder

- For any $a, b \in \mathbb{Z}, b > 0$, there exist unique $q, r \in \mathbb{Z}$ such that $a = qb + r, 0 \le r < b$
- Modulo
 - 16 mod 3 = 1
 - $-12 \mod 5 = 3$

Modular Arithmetic in SageMath



Integers in Base Other than 10

- Write 6137 in the octal system (base 8). In other words, finds r₀, r₁, ..., r_k so that (6137)₁₀=(r_k...r₂r₁r₀)₈
- Write 3387 into binary (base 2) and hexadecimal (base 16)

	Remainders		Remainde	rs
8 6137		16 13,874,945		
8 767	$1(r_0)$	16 867,184	ing 1 kinds	(r_0)
	A MARKAN AND A MARKAN	16 54,199	0	(r_1)
8 95	$7(r_1)$	16 3,387	7	(r_2)
8 11	$7(r_2)$	16 211	11 (= B)	(r_3)
8 1	$3(r_3)$,	16 13	3	(r_4)
0	$1(r_4)$	0	13 (= D)	(r_5)

Convert Integers into Other Bases

0 🕫	
123.digits(base=16)	
[11, 7]	
•	
123.digits(base=20)	
[3, 6]	
•	
123.digits(base=60)	
[3, 2]	
0 🕫	
3 + 2*60	-
123	

Validation

Denominators for Exact Fractions

- Start from our familiar 10-based (decimal) system, for a fraction number p/q, we sometime can represent it exactly in two-decimal-place (or fewer)
 - 1/2 = 0.50

 - 1/4 = 0.25

- 1/5 = 0.20

Divisors of 100

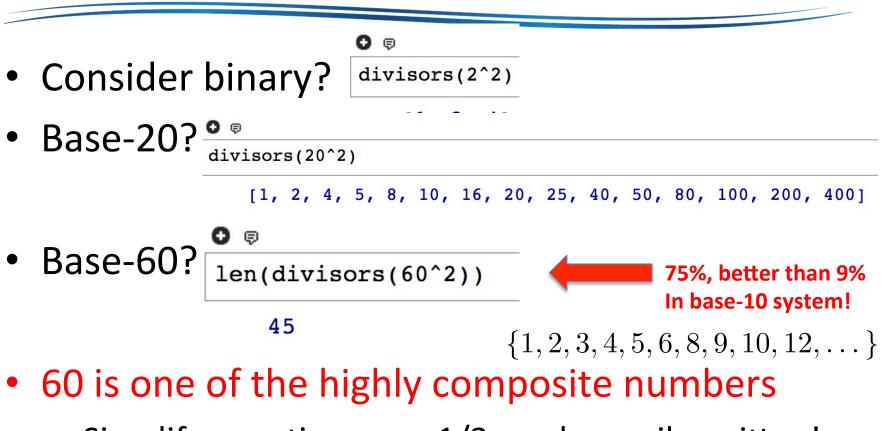
- Turns out that if *q* | *100*, we can write *p/q* as a two-decimal-place exact decimal!
 - Why? Think about how you do division in tabular form!
- Let's use SageMath to find all divisors of 100

divisors(100)

[1, 2, 4, 5, 10, 20, 25, 50, 100]

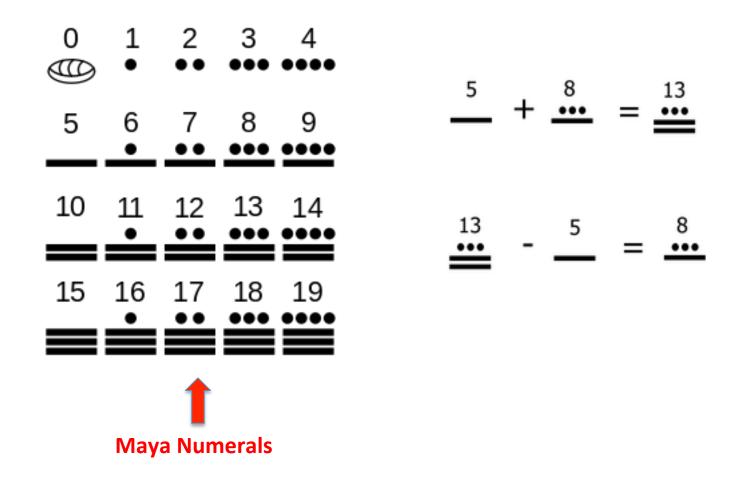
• 9 out of 100? So, most of the time two decimals are not enough!

How About Other Bases



– Simplify counting, now 1/3 can be easily written!

Who Use Base-20 Systems?



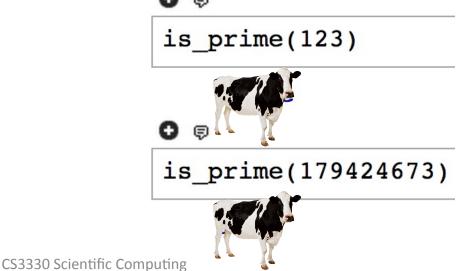
How About Base-60 System?

7 1	₹7 11	∜7 21	***(7 31	47 41	44 7 51
77 2	∢77 12	4(17 22	*** 17 32	4217 42	1 1 7 7 52
111 3	(11) 13	∜₩ 23	***??? 33	4 m 43	** 11 53
\$ 4	∜77 14	₩\$\$7 24	***\$\$ 34	44	* * 7 54
₩ 5	∜ ₩ 15	₩₩ 25	₩₩ 35	₩₩ 45	*** 55
6	∢हह 16	∜₩ 26	₩₩ 36	₩₩ 46	€ 👯 🛠
# 7	17	₩₩ 27	₩₩ 37	₩₩ 47	* * * * 57
₩ 8	18	**** 28	**** 38	48 48	€€€₩ 58
# 9	∢∰ 19	∜∰ 29	₩₩ 39	��₩ 49	��# 59
∢ 10	4 20	₩ 30	4 0	50	

• We still see base-60 systems in trigonometry and time metrics

Prime and Composite

- Primes are integers (n>1) with exactly two positive divisors
- All other integers (n>1) are called composite
- If $n \in \mathbb{Z}^+$ is composite, then there is a prime p such that p|n



Prime Related Fun Functions

next	_prime(123)
2	127
9 🕫	
next	_prime(10^100)
	10000000000000000000000000000000000000
90	
nth_	prime(1)
evalua	te
2	2
) 🖗	

7907

Prime Related Fun Functions (cont.)

orime_range(1,10)
[2, 3, 5, 7]
orime_range(1050, 1100)
[1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097]
Eactor(2015)
5 * 13 * 31
actor(-9999)
-1 * 3^2 * 11 * 101

Common Divisors

- For $a, b \in \mathbb{Z}$, c > 0 is a common divisor of a and b if c|a and c|b
- Let a, b ∈ Z, where a ≠ 0 or b ≠ 0. Then c ∈ Z⁺ is a greatest common divisor (gcd) of a and b if
 c|a, c|b
 - For any common divisor d of a and b, we know d|c
- For all a, b ∈ Z⁺, there exists a unique greatest common divisor of a and b, written as gcd(a,b)
 - it is actually the smallest positive integer that can is a linear combination of *a* and *b*

Common Multiples

- Let a, b ∈ Z⁺. c is a common multiple of a and b.
 c is the least common multiple if it is the smallest positive common multiple of a, b, we write c=lcm(a,b)
- If $a, b \in \mathbb{Z}^+$ and c = lcm(a, b). For any d that is a common multiple of a and b, we know
- For all $a, b \in \mathbb{Z}^+$, ab = lcm(a,b)gcd(a,b)

Fundamental Theorem of Arithmetic

- If a, b ∈ Z⁺ and p is a prime, then p|ab ⇒ p|a or p|b
 Can be generalized to n positive integers
- Any integer n>1 can be written as a (unique) product of primes

– Factorization

- Exercise: What is the prime factorization of 980220?
- Prove that 17 | n given

 $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot n = 21 \cdot 20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14$

Systematic Way to Find Gcd and Lcm

- Count the number of positive divisors of 360
 - Exercise: Find 2 ways to do this in SageMath, hint: factor(.) and divisors(.)
- Let $m = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}, n = p_1^{f_1} p_2^{f_2} \cdots p_t^{f_t}$, with $e_i, f_i \ge 0, \forall e_i, f_i$ we have $gcd(m, n) = \prod_{i=1}^{t} p_i^{a_i}, \text{ and } lcm(m, n) = \prod_{i=1}^{t} p_i^{b_i},$
 - where $a_i = \min(e_i, f_i), b_i = \max(e_i, f_i)$ - Find the gcd and lcm of $491891400 = 2^3 3^3 5^2 7^2 11^1 13^2$ and $1138845708 = 2^2 3^2 7^1 11^2 13^3 17^1$

SageMath Commands for Gcd and Lcm

0 🕫			
gcd(120,	64)		
8			
0 🕫			
lcm(120,	64)		
960			
0 🕫			
gcd(gcd(]	20, 55),	gcd(25,	35))
5			
0 🕫			
gcd([120,	55, 25,	35])	
122256			

Relative Prime

Integer a and b are relative prime if gcd(a,b)=1
 If there exist integers x and y, so that ax+by=1

• Exercise: Check if 1234 and 8765 are relative prime in SageMath

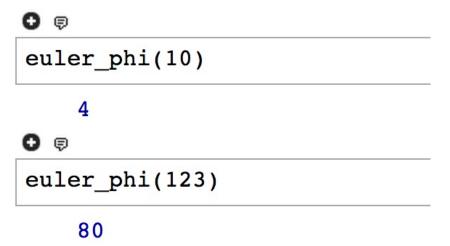
Euler's Phi Function

- We define φ(n) as the number of 1 ≤ z ≤ n, where gcd(z, n) = 1
 What is φ(10)?
- Write code to compute phi function

CS3330 Scientific Computing

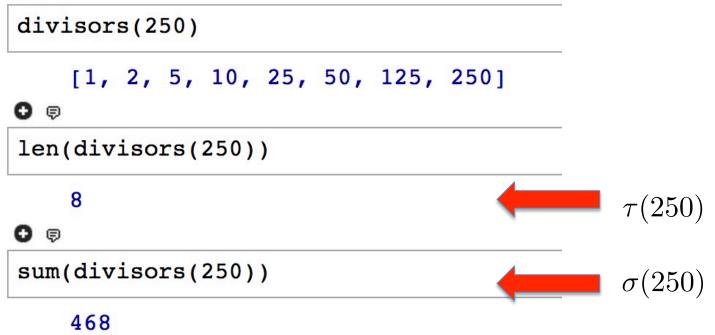
Euler's Phi Function (cont.)

- Try other x values for $\phi(x)$
- Suppose x and y are two distinct primes, what are the relation among $\phi(x), \phi(y)$, and $\phi(x \times y)$
- Actually, SageMath has a built-in phi function



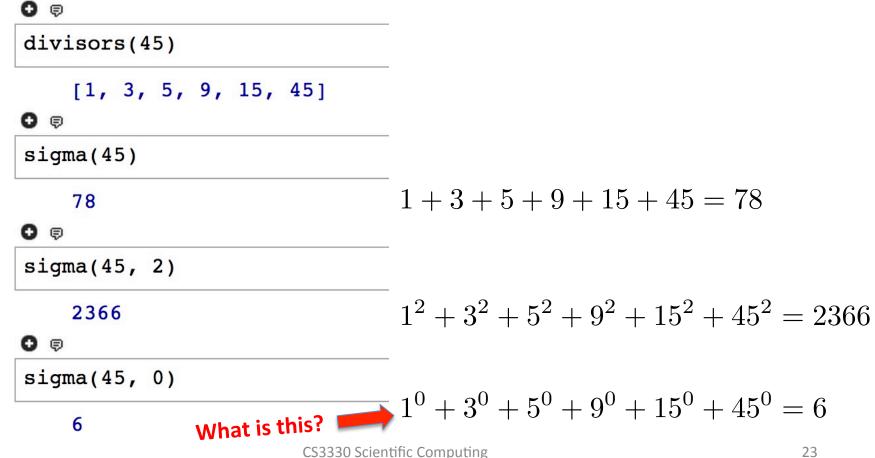
Divisors of an Integer

- We define $\tau(x)$ be the number of divisors of x



Built-in Sigma Function

Again, actually SageMath has a sigma function



Congruence

- If *a* and *b* have the same remainder upon division by *n*, *a* is *congruent* to *b* modulo *n*
 - Written as $a \equiv b \pmod{n}$

– That is
$$n|(a-b)$$

- Example
 - $23 \equiv 8 \pmod{5}$
 - -5|(23-8)|

Amicable Pairs of Numbers

 An interesting Arab tradition: put two numbers 220 and 284 on their rings and give them to their spouses

divisors 220 = {1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220} 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284 divisors 284 = {1, 2, 4, 71, 142, 284} 1 + 2 + 4 + 71 + 142 = 220

Summary

- We introduced various number theory functions in SageMath
- We will use them to introduce some cryptography results
- References:
 - <u>http://www.sagemath.org</u> ← Official Web and resources
 - <u>http://www.gregorybard.com/SAGE.html</u> ← Our textbook

SageMath #2 Homework (S2)

- 1. (2%) Write a SageMath program to find out at least 3 amicable pairs, including (220, 284)
- 2. (1%) Euclidean algorithm is a well-known algorithm calculating gcd of two integers. Implement it in SageMath and solve gcd(312500, 12768). Your program has to print individual steps. Hint: one version of the pseudocode looks like this:

```
function gcd(a, b)
while b ≠ 0
t := b
b := a mod b
a := t
return a
```