
HW12	M7	

Answer	(for	reference	only)	

1.	 	

Code:	 	 	 	 	 	 	 	 Result:	

	

2.	 	

Code:	 	 	 	 	 	 	 	 	 	

	

	

	

	

	

	

	

Result:	

	
Observation:	

When	the	x-axis	is	multiple	by	10,	the	values	spread	out	more.	We	could	see	that	

the	decision	boundary	is	changed,	and	the	influence	of	the	x	value	is	magnified.	

In	order	to	avoid	this	problem,	we	should	normalize	(scale)	the	data	before	

training	or	testing.	

	

DS.input = [2 0; 5 2; 7 3; 0 1; 2 3; 4 5]';
DS.output = [1 1 1 2 2 2];
DS.outputName = cell(1,2);
DS.outputName{1} = 'blue';
DS.outputName{2} = 'red';
%% Q1
figure;
knncPlot(DS, [], 'decBoundary');

%% Q2
DS2 = DS;
DS2.input(1,:) = DS2.input(1,:) * 10;
figure;
knncPlot(DS2, [], 'decBoundary');

3.	

Code:	

The	result:	

	

	

	

Observation:	

We	could	find	that	the	output	of	testing	the	point	(1,2)	is	1,	and	it	shows	that	the	

point	is	closer	to	the	red	region.	And	after	we	add	the	point	(1,1)	and	point	(2,2)	

to	the	blue	region,	3-NNC	would	re-classify	the	point	to	the	blue	region.	

	

4.	

The	complexity	is	O(nk+dk)	when	n	is	the	number	of	data	set	points.	

Distance	computation	requires	O(nd)	runtime.	Perform	O(n)	work	by	looping	

through	the	training	set	observations,	so	the	step	overall	requires	O(nk)	work.	

The	sum	of	it	is	O(nd+nk).	

	

%% Q3
trainSet = knncTrain(DS);
trainSet.k = 3;
computed = knncEval([1; 2], trainSet);
[n ~] = max(hist(computed));
fprintf('The output of 3-NNC of the point (1,2) is %s\n', DS.outputName{computed(n)})

DS.input = [DS.input [1 1;2 2]'];
DS.output = [DS.output 1 1];
trainSet = knncTrain(DS);
trainSet.k = 3;
computed = knncEval([1; 2], trainSet);
[n ~] = max(hist(computed));
fprintf('The output of adding points to training set is %s\n',

DS.outputName{computed(n)})

The output of 3-NNC of the point (1,2) is red
The output of adding points to training set is blue

