
Matlab 15:	Audio	Processing

Cheng-Hsin Hsu
National	Tsing	Hua	University

Department	of	Computer	Science

Slides	and	sample	codes	are	based	on	the	materials	from	
Prof.	Roger	Jang	

CS3330	Scientific	Computing 1

What	Are	Audio	Signals?

• Audio	signals	are…
– Signals	that	are	audible	to	human,	such	as	speech	
and	music

– The	range	of	fundamental	frequencies	of	audible	
signals	is	about	20	~	20000	Hz.
• The	range	is	wider	for	the	young	people,	narrower	for	
the	elderly.

Voice	Generation	&	Reception

• Steps	in	voice	
generation	&	reception
– Vibration	of	voice	source
– Resonance	by	
surrounding	objects

– Traveling	through	air	(or	
other	media)

– Reception	of	
membranes	and	neurons	
at	inner	ears

– Recognition	by	brains

• Examples
– Singing
– Whistling
– Guitar
– Flute

Categorization	of	Audio	Signals
• Number	of	sources

– Monophonic
– Polyphonic

• Waveform
– Quasi-periodic	sound

• voiced	sound	of	speech
– Aperiodic	sound

• Unvoiced	sound	of	speech

• Source	types
– Sounds	from	animals	

(bioacoustics)
• Dog	barking,	cat	meowing,	
frog	croaking,	duck	quacking

– Sounds	from	non-animals
• Car	engines,	thunders,	music	
instruments

S/U/V	in	Speech

❚ Speech	signals	can	be	divided	into	S,	U,	V
❙ S	(silence):	no	speech	activity
❙ U	(unvoiced):	speech	activity	without	vibration	
from	vocal	chords	

❙ V	(voiced):	speech	activity	with	vibration
❚ How	to	detect	S,	U,	V?
❙ By	putting	your	hand	on	your	throat	to	feel	the	
vibration

❙ By	waveform	observation

Tools	for	General	Audio	Processing

• Tools	for	recording	and	waveform	observation
– Cool	Edit
– GoldWave
– Audacity
–MATLAB

• Quiz	question!
–What	is	the	major	difference	between	the	
waveforms	of	speech	and	whistle?

Speech	Signal	of	“Sunday”

• Unvoiced	vs.	voiced	frames

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-1

-0.5

0

0.5

1

Time (sec)

Am
pl

itu
de

Details waveform of "Sunday"

0.18 0.2 0.22
-1

-0.5

0

0.5

1

0.54 0.56 0.58
-1

-0.5

0

0.5

1

Silence,	Unvoiced	and	Voiced	Sounds

• Examples	of	S,	U,	V
– “Six”

– “資訊系”
s u v u sv u v

s u v s u s

Quiz candidate!

Human	Speech	Production

Source-filter	Model	for	Human	Speech	Production

Speech	is	split	into	a	rapidly	varying	excitation	signal	and	a	
slowly	varying	filter.	The	envelope	of	the	power	spectra	
contains	the	vocal	tract	info.

Two	important	characteristics	of	the	model	are	fundamental	
frequency (f0)	and	formants (F1,	F2,	F3,	…)

unvoiced

voiced

The	Vocal	Tract

Glottal	Volume	Velocity	&
Resulting	Sound	Pressure	(Voiced)

Speech	Production

Glottal Pulses Vocal Tract Speech Signal

(a) Source Spectrum (c) Output Energy
Spectrum

+

+ =

=

(b) Filter
Function

Videos	for	Vocal	Cords	Movement

• Movement	of	vocal	cords
– http://www.youtube.com/watch?v=mJedwz_r2Pc
– http://www.youtube.com/watch?v=v9Wdf-RwLcs

Parameters	for	Recording

• Three	major	parameters	for	recording	audio	files
– Sample	rate:	no.	of	samples	per	sec

• 8	kHz	(phone	quality)
• 16	KHz	(for	common	speech	recognition)
• 44.1	KHz	(CD	quality)

– Bit	resolution:	no.	of	bits	for	representing	a	sample
• 8-bit	 (uint8	with	range:	0~255)
• 16-bit	(int16	with	range:	-32768~32767)

– No	of	channels
• Mono
• Stereo

Storage	for	Audio	Files

• Examples	of	storage	requirement
– 1	min.	of	recording	with	fs=16000,	nbits=16,	
#channel=1è 60	(sec)*16	(KHz)*2	(byetes)*1	
(channel)	=	1920	KB	=	1.92	MB

– 3-mins	of	CD	music	with	fs=44.1KHz,	nbits=16,	
#channel=2	è 180	(sec)*44.1	(KHz)*2	(bytes)*2	
(channels)	=	31752	KB	=	32	MB

How	to	Generate	a	Sine	Wave	Signal

–Math	formula:
–MATLAB	code:

duration=3;
f=440;
fs=16000;
time=(0:duration*fs-1)/fs;
y=0.8*sin(2*pi*f*time);
plot(time,	y);
sound(y,	fs);

)2sin(* qp += ftay

18

• Analog:	continuous	phenomenon,	between	any	
two	points	there	exist	infinite	number	of	points			
– Most	natural	phenomena

• Discrete:	points	(either	in	time	or	space)	are	
clearly	separated

• Computers	work	with	discrete	values	è analog-
to-digital	conversion

• Digital	media:
– Better	quality,	less	susceptible	to	noise
– More	compact	to	store	and	transmit	(high	

compression	ratios)

Analog	&	Discrete	Phenomena	

19

• Sampling:	
– choose	discrete	points	at	which	we	measure	
(sample)	the	continuous	signal

– Sampling	rate	is	important	to	recreate	the	original	
signal

• Quantization:
– Represent	each	sample	using	a	fixed	number	of	
bits

– Bit	depth	(or	sample	size)	specifies	the	precision	
to	represent	a	value	

Analog-to-Digital	Conversion:	Two	Steps

20

• Nyquist frequency
– The	minimum	sampling	rate	to	reconstruct	the	
original	signal: r	=	2	f

– f is	the	frequency	of	the	signal

• Under	sampling	can	produce	
distorted/different	signals	(aliasing)

Sampling

21

• f	=	637 Hz

• Sampling	at	
770	(<	2	f)	
produces	a	
different	
wave

Under	Sampling:	Example	

22

• n bits	to	represent	a	digital	sample	èmax	
number	of	different	levels	is		m	=	2n

• è real,	continuous,	sample	values	are	
rounded	(approximated)	to	the	nearest	levels

• è Some	information	(precision)	could	be	lost	

Quantization

Properties	of	Audio	Signals
• Volume:	amplitude,	loudness,	intensity,	or	energy
• Pitch:	fundamental	frequency
• Timbre:	tone	color	or	quality

0.5 1 1.5 2 2.5 3 3.5

x 104

-1

-0.5

0

0.5

1

Sample index

Am
plit

ude

taiwan.wav

50 100 150 200 250 300 350 400 450 500
-1

-0.5

0

0.5

1

Sample index within the frame

Am
plit

ude

Time-domain	Features

n Time-domain	audio	features	presented	in	a	frame	
(analysis	window)

Intensity

Fundamental period

Timbre: Waveform within an FP

Frequency-domain	Features
• Frequency-domain	audio	features	in	a	frame
– Energy:	Sum	of	power	spectrum
– Pitch:	Distance	between	harmonics
– Timber:	Smoothed	spectrum Second formant

F2First formant
F1

Pitch freq

Energy

Read,	Play,	and	Visualize	Audio	Files

• Use	audioread to	read	a	wav	file
• Use	sound	to	play	the	sound
• Plot	the	waveform
[y, fs]=audioread('bear.wav');
sound(y, fs);
time=(1:length(y))/fs;
plot(time, y);

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Read	the	Metadata	in	Audio	Files

• Reading metadata
– info=audioInfo(‘file’);
– Different types of

audio files may return
different fields of info.

• Two types of reading
data from audio files
– For audio itself

• y= audioread(‘file’)
– For metadata

• info=audioinfo(‘file’)

fileName='bear.wav';
info=audioinfo(fileName);
fprintf('Filename = %s\n', info.Filename);
fprintf('Compression = %s\n',
info.CompressionMethod);
fprintf('No. Channels = %g\n',
info.NumChannels);
fprintf('Smpling Rate = %g Hz\n',
info.SampleRate);
fprintf('Samples = %g\n', info.TotalSamples);
fprintf('Duration = %g secs \n', info.Duration);
fprintf('Resolution = %g bits/sample\n',
info.BitsPerSample);

Normalization	on	Audio	Signals

• Data	is	audio	files
– 8	bits	è uint8,	[0,	28-1]
– 16	bits	è int16,	[-215,	

215-1]

• MATLAB’s	method	to	
scale	to	range	[-1,	1]
– 8	bits	è (y-128)/128
– 16	bits	è y/32768

• Check	MATLABs’	scaling

fileName='bear.wav';
[y, fs]=audioread(fileName);
info=audioinfo(fileName);
nbits=info.BitsPerSample;
y0=round(y*32768)

Stereo	Audio	Files

• audioread can	also	read	
stereo	wav	files

• Each	column	represents	
a	L-R	channel

fileName= 'bear.wav';
[y, fs]=audioread(fileName);
sound(y, fs);
left=y(:,1);
right=y(:,2);
subplot(2,1,1), plot((1:length(left))/fs, left);
subplot(2,1,2), plot((1:length(right))/fs, right);

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

Read	Part	of	an	Audio	File

– If	we	only	want	to	read	parts	of	an	audio	file
– audioRead05.m

[y,fs]=audioread('bear.wav', [5001 7000]); figure; plot(y)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Play	Audio	in	Matlab

• After	reading	audio	files	into	Matlab
• We	can	also	process	the	audio	data
– Increase/decrease	volume
– increase/reduce	pitches
– De-noise

• Ant	then	play	out	the	result	audio	signals

Play	Audio (1/2)

• Play	a	single	sound

• Play	multiple	sounds

load bear.mat
sound(y, fs);

[y, fs]=audioread('bear.wav');
sound(y, fs);
pause(1);
sound(3*y, fs);
pause(1);
sound(3*y, fs*0.8);

Play	Audio (2/2)

n Create	a	audio	object
n audioplayer
n play
n playblocking

• Play	a	single	sound

• Sequentially	Play	
multiple	sounds

load bear.mat
p=audioplayer(y, fs);
play(p);

[y, fs]=audioread('bear.wav');
p=audioplayer(y, fs);
playblocking(p);
load bear.mat
p=audioplayer(y, fs * 1.2);
playblocking(p);

Changing	the	Amplitudes	

– Adjust volumes
– Question: do you think the volume goes up for 3,

5, and 7 times in the following example?

[y, fs]=audioread('bear.wav');
p=audioplayer(1*y, fs); playblocking(p);
p=audioplayer(3*y, fs); playblocking(p);
p=audioplayer(5*y, fs); playblocking(p);
p=audioplayer(7*y, fs); playblocking(p);

Changing	the	Sampling	Rates	(1/2)

– New sampling rates à new play duration *and*
new pitches

– In the following example, the play durations get
shorter and the pitches go higher à sounds like
Donald Duck

[y, fs]=audioread('bear.wav');
p=audioplayer(y, fs);
p.SampleRate=1.0*fs; playblocking(p);
p.SampleRate=1.2*fs; playblocking(p);
p.SampleRate=1.5*fs; playblocking(p);
p.SampleRate=2.0*fs; playblocking(p);

Changing	the	Sampling	Rates	(2/2)

– In the following example, the play durations get
longer and the pitches go lowerà sounds like
cows

[y, fs]=audioread('bear.wav');
p=audioplayer(y, fs);
p.SampleRate=1.0*fs; playblocking(p);
p.SampleRate=0.8*fs; playblocking(p);
p.SampleRate=0.6*fs; playblocking(p);
p.SampleRate=0.4*fs; playblocking(p);

Observations
nObservations

nHigher	sample	rate	for	playback	leads	to…
nShorter	duration	and	higher	pitch

nLower	sample	rate	for	playback	leads	to...
nLonger	duration	and	lower	pitch

nHow	to…
nGenerate	higher	pitch	without	duration	change?

è Pitch	modification
nCreate	longer	duration	without	pitch	change?

è Duration	modification

Change	the	Audio	Signals

– 0) Play the wav as-is
– 1) Change the sign of audio signals
– 2) Reverse the signals (along the time domain)
– What will happen?

[y, fs]=audioread('bear.wav');
p=audioplayer(y, fs); playblocking(p);
p=audioplayer(-y, fs); playblocking(p);
p=audioplayer(flipud(y), fs); playblocking(p);

Volume	Adjustment

– Soundsc scales the data so that the sound is
played as loud as possible without clipping

[y, fs]=audioread('bear.wav');
sound(y, fs);
fprintf('Press any key to continue...\n'); pause
soundsc(y, fs);

Record	Audio	Files

• We	have	seen	how	to	read	audio	files
• We	have	learned	how	to	play	audio	files
• Let’s	create	new	audio	files
– audiorecorder
– recordblocking

Audio	Recording	Example	(1/2)

• Record	3	seconds	using	default	settings

– Default	settings
• Sampling	rate:	8000	Hz
• Per	sample	resolution:	8	bits
• Mono

duration=3;
recObj=audiorecorder;
recordblocking(recObj, duration);
fprintf('Press any key to play out：'); pause
play(recObj);

Audio	Recording	Example	(2/2)

• Use	non-default	settings

fs=16000; % sampling rate
nBits=16; % bit resolution
nChannel=1; % no. channel
duration=3; % duration in seconds
recObj=audiorecorder(fs, nBits, nChannel);
fprintf('Press any key to start recording for %g seconds：', duration);
pause
fprintf('recording...');
recordblocking(recObj, duration);
fprintf('Press any key to playout...'); pause
play(recObj);
y = getaudiodata(recObj, 'double');% get data as a double array
plot((1:length(y))/fs, y);
xlabel('Time (sec)'); ylabel('Amplitude');

Write	Audio	Records	as	Files	(1/2)

• Matlab also	allows	us	to	save	recordings	as	
files
– audiowrite(audioFile,	y,	fs)
• audioFile is	the	filename，y	is	the	audio	sample，fs	is	
the	sampling	rate

load bear.mat
audioFile='bear2.wav';
fprintf('Saving to %s...\n', audioFile);
audiowrite(audioFile, y, round(1.5*fs));
fprintf('Press any key to play %s...\n', audioFile);
dos(['open ', audioFile]);

Write	Audio	Records	as	Files	(2/2)

• Combine	recording,	playing,	and	saving	into	
the	following	code

fs=16000;
nBits=16;
nChannel=1;
duration=3;
recObj=audiorecorder(fs, nBits, nChannel);
fprintf('Press any key to record for %g seconds：', duration); pause
recordblocking(recObj, duration);
y = getaudiodata(recObj, 'double');
plot((1:length(y))/fs, y); xlabel('Time (sec)'); ylabel('Amplitude');
sound(y, fs);
audioFile='myRecording.wav';
fprintf('Saving to %s...\n', audioFile);
audiowrite(audioFile, y, fs);
system('open myRecording.wav');

Matlab #13	Homework	(M13)
1. Wave	recording	(2%):	Write	a	MATLAB	script	recordMyVoice01.m	to	

record	10	seconds	of	your	speech,	say	introduce	yourself.	Save	your	
recording	as	myVoice.wav.	Other	recording	parameters	are:	sample	
rate	=	16	KHz,	bit	resolution	=	16	bits.	Please	use	the	script	to	print	
out	answers	to	the	following	questions	within	the	MATLAB	window.
– How	much	space	is	taken	by	the	audio	data	in	the	MATLAB	workspace?
– What	the	data	type	of	the	audio	data?
– How	do	you	compute	the	amount	of	the	required	memory	from	the	

recording	parameters?
– What	is	the	size	of	myVoice.wav?
– How	many	bytes	is	used	in	myVoice.wav to	record	overheads	other	than	

the	audio	data	itself?

CS3330	Scientific	Computing 45

