Matlab 5: K-Means Clustering

Cheng-Hsin Hsu

National Tsing Hua University Department of Computer Science

Slides and sample codes are based on the materials from Prof. Roger Jang

CS3330 Scientific Computing

Goals

Let's visualize what is K-means clustering

K-Means Clustering

- Find k points of a dataset to best represent the dataset with minimum deviation (distortion)
 - k is a user-specified parameter, could be chosen using validation
- These chosen points are called cluster centers

 Or prototypes, centroids, and codewords

- Data classification: remove noisy data and reduce computational complexity
- Data compression: use the cluster centers to represent the original dataset ← fewer possibilities, easier to code
 - Homework: better indexed colors for the minion picture, chosen by your K-mean code

High-Level Idea

- Objective function: the sum of square distances between each data point and its nearest cluster centers ← called distortion
- Have to make two crucial decisions
 - Where are the cluster centers?
 - Which cluster does each data point belong to?
- Approach: we iteratively find the optimal of a decision while having the other decision fixed
 Coordinate optimization

Example of Coordinate Optimization

$$f(x, y) = x^{2}(y^{2} + y + 1) + x(y^{2} - 1) + y^{2} - 1$$

$$\frac{\partial f(x, y)}{\partial x} = 2x(y^{2} + y + 1) + (y^{2} - 1) = 0 \Rightarrow x = -\frac{y^{2} - 1}{2(y^{2} + y + 1)}$$

$$\frac{\partial f(x, y)}{\partial y} = 2x(2y + 1) + x(2y) + 2y = 0 \Rightarrow y = -\frac{x}{3x + 1}$$

ezmesh(@(x,y) x.^2*(y.^2+y+1)+x.*(y^{0}) + 2x^{2} - 1) + y.^{2} - 1)

Math Notations

Input:

- $X = \{x_1, x_2, \dots, x_n\}$ A data set in d-dim. space
- *m*: Number of clusters (we avoid using *k* here to avoid confusion with other summation indices)

Output:

- m cluster centers: $c_j, 1 \le j \le m$
- Assignment of each x to one of the m clusters:

$$a_{ij} \in \{0,1\}, 1 \le i \le n, 1 \le j \le m$$
$$\sum_{j=1}^{m} a_{ij} = 1, \forall i$$

Math Notations (cont.)

$$e_{j} = \sum_{x_{i} \in G_{j}} \left\| x_{i} - c_{j} \right\|^{2}$$
Objective function, we aim to minimize it
$$J(X; C, A) = \sum_{j=1}^{m} e_{j} = \sum_{j=1}^{m} \sum_{x_{i} \in G_{j}} \left\| x_{i} - c_{j} \right\|^{2} = \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} \left\| x_{i} - c_{j} \right\|^{2}, where$$

$$X = \{x_{1}, x_{2}, \dots, x_{n}\}$$

$$C = \{c_{1}, c_{2}, \dots, c_{m}\}$$
Decision variables, notice that C has a dim of d x m and A has a dim of n x m
$$a_{ij} = 1 \text{ iff } x_{i} \in G_{j}, \text{ with } \sum_{j=1}^{m} a_{ij} = 1, \forall i$$

Minimizing J(X; C,A)

- Turns out to be NP-Hard
- Fall back to coordinate optimization
 - It's not perfect: we don't get global optimum
 - Yet it's not terribly bad: we do get local optimum

Step 1: Finding the Best A (Association)

- Analytic (closed-form) solution exists
- Intuition: $\frac{\partial J(X,C,A)}{\partial a_{ij}} = \|x_i c_j\|^2 \ \forall a_{i,j}$

• Therefore:
$$\hat{a}_{ij} = \begin{cases} 1 \text{ if } j = \arg \min_{q} ||x_i - c_q||^2 \\ 0, \text{ otherwise} \end{cases}$$
 Optimal for this step

• Or formally:

 $\hat{A} = \arg\min_{A} J(X;C,A) \Leftrightarrow J(X;C,A) \ge J(X;C,\hat{A}), \forall C$

Step 2: Finding the Best C (Centers)

- Analytic (closed-form) solution also exists
- Intuition: $\frac{\partial J(X,C,A)}{\partial c_j} = \sum_{i=1}^n a_{ij} [-2\|x_i c_j\|]$
- To get the extreme value, we have:

• Or formally:

$$\hat{C} = \arg\min_{C} J(X;C,A) \Leftrightarrow J(X;C,A) \ge J(X;\hat{C},A), \forall A$$

Optimal for this step

 $\hat{c}_j = \frac{\sum_{i=1}^{n} a_{ij} x_i}{\sum_{i=1}^{n} a_{ij}}$

K-Mean Algorithm

- 1. Initialize
 - Select initial *m* cluster centers
- 2. Find associations
 - For each *x_i*, assign the cluster with nearest center
 - \rightarrow Find A to minimize J(X; C, A) with fixed C
- 3. Find centers
 - Compute each cluster center as the mean of data in the cluster
 - \rightarrow Find C to minimize J(X; C, A) with fixed A
- 4. Stopping criterion
 - Stop if clusters stay the same. Otherwise go to step 2.

Stopping Criteria

- •Two stopping criteria
 - Repeating until no more change in cluster assignment
 - Repeat until distortion improvement is less than a threshold

•Fact: Convergence is assured since J is reduced repeatedly ← Distortion is monotonically nonincreasing

 $J(X;C_1,_) \ge J(X;C_1,A_1) \ge J(X;C_2,A_1) \ge J(X;C_2,A_2) \ge J(X;C_3,A_2) \ge J(X;C_3,A_3) \ge \cdots$

How K-Means Works

Demo of K-Mean Clustering

- Download the (demo version of) the Machine Learning Toolbox from Prof. Jang's website
 - <u>http://mirlab.org/jang/matlab/toolbox/</u> <u>machineLearning/</u>
- Try the two demos
 - kMeansClustering.m ← animations of kmeans algorithm
 - vecQuantize.m ← clustering versus quantization

Demo of K-Mean Clustering (cont.)

Sample Code

```
% ====== Get the data set
DS = dcData(5);
subplot(2,2,1);
plot(DS.input(1,:), DS.input(2,:), '.');
% ====== Run kmeans
centerNum=6;
[center, U, distortion, allCenters] = kMeansClustering(DS.input, centerNum);
% ===== Plot the result
subplot(2,2,2);
vqDataPlot(DS.input, center);
subplot(2,1,2);
plot(distortion, 'o-');
xlabel('No. of iterations'); ylabel('Distortion'); grid on
```

Sample Code #1

Discussions

- While the distortion is monotonically nonincreasing, we don't always get the global minimum ← may stuck in one of the local minimums
 - Solution: try a few random initial centers
 - Alternate solution: select initial centers as the dataset points with the largest sum of pairwise squared distance ← intuitively good, but still no guarantees

Discussions (cont.)

- It is possible that during the K-means iterations, one of the clusters has zero dataset point
 - Solution: split a cluster into two, different heuristics are possible, e.g., cluster with the maximal number of dataset points
- What we introduced is called batch K-means algorithm
 - There is also an online version existing, also known as sequential K-means algorithm

Image Compression: An Application

- Convert a image from true colors to indexed colors with minimum distortion
- Steps:
 - Collect data from a true-color image
 - Perform k-means clustering to obtain cluster centers as the indexed colors
 - Map each pixel's true color into indexed color

Recap: True- versus Indexed-Colors

True-color image

 Each pixel is represented by a vector of 3 components [R, G, B]

Index-color image

 Each pixel is represented by an index into a color map

Read the Image, Check the Size

- X = imread('minion.jpg'); image(X); [m, n, p] = size(X)
- 640 x 640 x 3 matrix
- Check the color - dec2hex(X(200,200,:))- dec2hex(X(300,300,:))

How to Apply K-Means?

- (x, y, :) are the RGB values of a single pixel
 ← A sample in a 3-dim space!
- Have to convert a pixel into a column of a 2-D array
- Example: Indexing of pixels for an 2 x 3 x 3 image

• Related command (exercise): reshape

How to Apply K-Means? (cont.)

- index=reshape(X(1:m*n*p), m*n, 3)';
- >> size(index)
- ans = 3 409600

Now we have 409600 samples, find the centers using K-means algorithm

(Partially-Working?) Code

```
X = imread('minion.jpg');
image(X)
[m, n, p]=size(X);
index=reshape(1:m*n*p, m*n, 3)';
data=double(X(index));
maxl=4:
for i=1:maxl
    centerNum=2<sup>i</sup>;
    fprintf('i=%d/%d: no. of centers=%d\n', i, maxI, centerNum);
    center=kMeansClustering(data, centerNum);
    distMat=distPairwise(center, data);
     [minValue, minIndex]=min(distMat);
    X2=reshape(minIndex, m, n);
    map=center'/255;
    figure; image(X2); colormap(map); colorbar; axis image;
end
```

enc

Results

Compression Ratio

$$before = m * n * 3 * 8 \ bits$$

$$after = m * n * \log_2(c) + c * 3 * 8 \ bits$$

$$\rho = \frac{before}{after} = \frac{m * n * 3 * 8}{m * n * \log_2(c) + c * 3 * 8} = \frac{24}{\log_2(c) + \frac{24c}{m * n}} \approx \frac{24}{\log_2(c)}$$

Note: Compared to raw 8-bit RGB image, not PNG (lossless) nor JPG (lossy)

Matlab #5 Homework (M5)

- 1. (1%) We said that the K-Mean algorithm on slide 12 always converges in finite number of steps. Prove this is indeed the case.
- 2. (1%) Generate 1000 sample points in 3-d space, where each x, y, and z is uniformly distributed between 0 and 1. Write code to perform K-means of these points with K=2, where the initial cluster centers also follow uniform distribution. Run your code 3 times and plot three 3-D figures. Print and submit your figures along with your observations. In particular, what K-means tells you? What is the truth?