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Slides	and	sample	codes	are	based	on	the	materials	from	
Prof.	Roger	Jang		
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•  Let’s	visualize	what	is	K-means	clustering	
	

Goals	
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K-Means	Clustering	

•  Find	k	points	of	a	dataset	to	best	represent	
the	dataset	with	minimum	deviaAon	
(distorAon)	
– k	is	a	user-specified	parameter,	could	be	chosen	
using	validaAon	

•  These	chosen	points	are	called	cluster	centers	
– Or	prototypes,	centroids,	and	codewords	
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Sample	ApplicaAons	

•  Data	classificaAon:	remove	noisy	data	and	
reduce	computaAonal	complexity	

•  Data	compression:	use	the	cluster	centers	to	
represent	the	original	dataset	ß	fewer	
possibiliAes,	easier	to	code	
– Homework:	beWer	indexed	colors	for	the	minion	
picture,	chosen	by	your	K-mean	code	
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High-Level	Idea	

•  ObjecAve	funcAon:	the	sum	of	square	
distances	between	each	data	point	and	its	
nearest	cluster	centers	ß	called	distorAon	

•  Have	to	make	two	crucial	decisions	
– Where	are	the	cluster	centers?	
– Which	cluster	does	each	data	point	belong	to?	

•  Approach:	we	iteraAvely	find	the	opAmal	of	a	
decision	while	having	the	other	decision	fixed	
ß	coordinate	opAmizaAon	
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Example of Coordinate Optimization 
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Math	NotaAons	

Input: 
–                          : A data set in d-dim. space 
– m: Number of clusters (we avoid using k here to avoid  

confusion with other summation indices) 
Output: 

–  m cluster centers: 
–  Assignment of each xi to one of the m clusters: 
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Math	NotaAons	(cont.)	
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ObjecAve	funcAon,	we	aim	to	minimize	it	

Decision	variables,	noAce	that	C	has	a	dim	of	d	x	m	
and	A	has	a	dim	of	n	x	m		



Minimizing	J(X;	C,A)	

•  Turns	out	to	be	NP-Hard	
•  Fall	back	to	coordinate	opAmizaAon	

–  It’s	not	perfect:	we	don’t	get	global	opAmum	
– Yet	it’s	not	terribly	bad:	we	do	get	local	opAmum		
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Step	1:	Finding	the	Best	A	(AssociaAon)	

•  AnalyAc	(closed-form)	soluAon	exists	
•  IntuiAon:	

•  Therefore:			

•  Or	formally:		
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Step	2:	Finding	the	Best	C	(Centers)	

•  AnalyAc	(closed-form)	soluAon	also	exists	
•  IntuiAon:	

•  To	get	the	extreme	value,	we	have:			

•  Or	formally:		
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K-Mean Algorithm 

1.  Initialize 
•  Select initial m cluster centers 

2.  Find associations 
•  For each xi, assign the cluster with nearest center 
•  è Find A to minimize J(X; C, A) with fixed C 

3.  Find centers 
•  Compute each cluster center as the mean of data in 

the cluster 
•  è Find C to minimize J(X; C, A) with fixed A 

4.  Stopping criterion 
•  Stop if clusters stay the same. Otherwise go to step 2. 
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Stopping Criteria 

• Two stopping criteria 
–  Repeating until no more change in cluster 

assignment 
–  Repeat until distortion improvement is less 

than a threshold 
• Fact: Convergence is assured since J is 
reduced repeatedly ß Distortion is 
monotonically nonincreasing 

 !≥≥≥≥≥≥ ),;(),;(),;(),;(),;(_),;( 33232212111 ACXJACXJACXJACXJACXJCXJ



How	K-Means	Works	
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Expecta2on	Maximiza2on	(EM):	distribu2ons	ß	associa2on,	parameters	ß	centers	



Demo	of	K-Mean	Clustering	

•  Download	the	(demo	version	of)	the	Machine	
Learning	Toolbox	from	Prof.	Jang’s	website	
– hWp://mirlab.org/jang/matlab/toolbox/
machineLearning/	

•  Try	the	two	demos	
– kMeansClustering.m ß animations of k-

means algorithm 
– vecQuantize.m ß clustering versus 

quantization	
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Demo	of	K-Mean	Clustering	(cont.)	

CS3330	ScienAfic	CompuAng	 16	

Input-1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

In
pu
t-2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Input-1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

In
pu
t-2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8



Sample	Code		
%	======	Get	the	data	set	
DS	=	dcData(5);	
subplot(2,2,1);	
plot(DS.input(1,:),	DS.input(2,:),	'.');	
%	======	Run	kmeans	
centerNum=6;	
[center,	U,	distorAon,	allCenters]	=	kMeansClustering(DS.input,	centerNum);	
%	======	Plot	the	result	
subplot(2,2,2);	
vqDataPlot(DS.input,	center);	
subplot(2,1,2);	
plot(distorAon,	'o-');	
xlabel('No.	of	iteraAons');	ylabel('DistorAon');	grid	on		
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Sample	Code	#1	
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Discussions		

•  While	the	distorAon	is	monotonically	
nonincreasing,	we	don’t	always	get	the	global	
minimum	ß	may	stuck	in	one	of	the	local	
minimums	
– SoluAon:	try	a	few	random	iniAal	centers	
– Alternate	soluAon:	select	iniAal	centers	as	the	
dataset	points	with	the	largest	sum	of	pairwise	
squared	distance	ß	intuiAvely	good,	but	sAll	no	
guarantees	
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Discussions	(cont.)	

•  It	is	possible	that	during	the	K-means	
iteraAons,	one	of	the	clusters	has	zero	dataset	
point	
– SoluAon:	split	a	cluster	into	two,	different	
heurisAcs	are	possible,	e.g.,	cluster	with	the	
maximal	number	of	dataset	points	

•  What	we	introduced	is	called	batch	K-means	
algorithm	
– There	is	also	an	online	version	exisAng,	also	
known	as	sequenAal	K-means	algorithm	
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Image	Compression:	An	ApplicaAon	

•  Convert	a	image	from	true	colors	to	indexed	
colors	with	minimum	distorAon	

•  Steps:	
–  Collect data from a true-color image 
–  Perform k-means clustering to obtain cluster 

centers as the indexed colors  
–  Map each pixel’s true color into indexed color 
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Recap:	True-	versus	Indexed-Colors	
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True-color image 
•  Each pixel is 

represented by a 
vector of 3 
components [R, 
G, B]

Index-color image 
•  Each pixel is 

represented by 
an index into a 
color map



Read	the	Image,	Check	the	Size	

X	=	imread('minion.jpg');	
image(X);	
[m,	n,	p]=size(X)	
	
•  640	x	640	x	3	matrix	
•  Check	the	color	

– dec2hex(X(200,200,:))	
–  	dec2hex(X(300,300,:))	
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How to Apply K-Means?
•  (x, y, :) are the RGB values of a single pixel 
ß A sample in a 3-dim space! 

•  Have to convert a pixel into a column of a 2-D 
array 

•  Example: Indexing of pixels for an 2 x 3 x 3 
image 

 
•  Related command (exercise): reshape 
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How to Apply K-Means? (cont.)	

•  index=reshape(X(1:m*n*p),	m*n,	3)';	
•  >>	size(index)	
•  ans	=	3						409600	

•  Now	we	have	409600	samples,	find	the	
centers	using	K-means	algorithm	
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(Partially-Working?) Code 
X = imread('minion.jpg'); 
image(X) 
[m, n, p]=size(X); 
index=reshape(1:m*n*p, m*n, 3)'; 
data=double(X(index)); 
maxI=4; 
for i=1:maxI 

 centerNum=2^i; 
 fprintf('i=%d/%d: no. of centers=%d\n', i, maxI, centerNum); 
 center=kMeansClustering(data, centerNum); 
 distMat=distPairwise(center, data); 
 [minValue, minIndex]=min(distMat); 
 X2=reshape(minIndex, m, n); 
 map=center'/255; 
 figure; image(X2); colormap(map); colorbar; axis image; 

end 



Results	
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Compression	RaAo	
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Note:	Compared	to	raw	8-bit	RGB	image,	
											not	PNG	(lossless)	nor	JPG	(lossy)	



Matlab	#5	Homework	(M5)	

1.  (1%)	We	said	that	the	K-Mean	algorithm	on	slide	12	
always	converges	in	finite	number	of	steps.	Prove	this	
is	indeed	the	case.		

2.  (1%)	Generate	1000	sample	points	in	3-d	space,	where	
each	x,	y,	and	z	is	uniformly	distributed	between	0	and	
1.	Write	code	to	perform	K-means	of	these	points	with	
K=2,	where	the	iniAal	cluster	centers	also	follow	
uniform	distribuAon.	Run	your	code	3	Ames	and	plot	
three	3-D	figures.	Print	and	submit	your	figures	along	
with	your	observaAons.	In	parAcular,	what	K-means	
tells	you?	What	is	the	truth?	
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