SageMath 2: Number Theory and RSA Cryptosystem

Cheng-Hsin Hsu

National Tsing Hua University Department of Computer Science

CS3330 Scientific Computing

Divisibility

- *a* and *b* are integers, *b* divides *a* if there exists an integer *q* such that *a=qb*
 - b is a divisor of a
 - b is a factor of a
 - -a is a multiple of b
- Example
 - 12 divides 144, because 144 = 12 x 12
 - Every integer divides 0
 - 0 does not divide any integer, except 0 itself

Modular Arithmetic

• Example: $16 \div 3 = 5 \cdots 1$

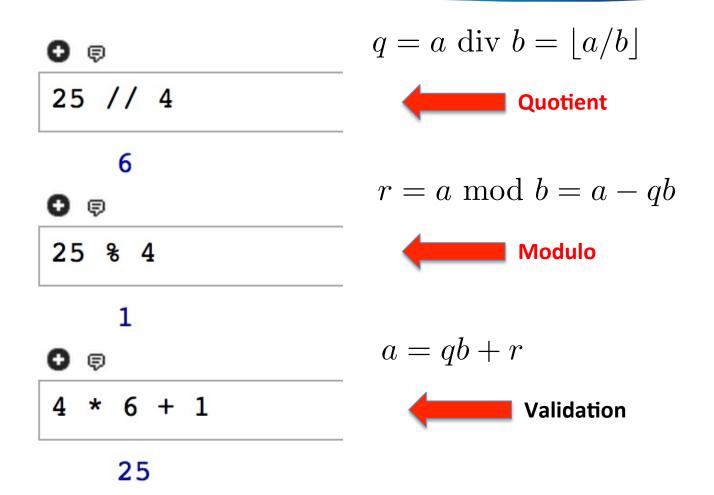
Dividend Divisor Quotient Remainder

• For any $a, b \in \mathbb{Z}, b > 0$, there exist unique $q, r \in \mathbb{Z}$ such that $a = qb + r, 0 \leq r < b$

- SageMath/Python: (i) b < 0 is possible, and $br \ge 0$, |r| < |b|

- Modulo
 - 16 $\mod 3 = 1$
 - $-12 \mod 5 = 3$

Modular Arithmetic in SageMath



Integers in Base Other than 10

- Write 6137 in the octal system (base 8). In other words, finds r₀, r₁, ..., r_k so that (6137)₁₀=(r_k...r₂r₁r₀)₈
- Write 3387 into binary (base 2) and hexadecimal (base 16)

Remainders		Remainders	
	16 13,874,945		
$1(r_0)$	16 867,184	1	(r_0)
a the state of the state	16 54,199	0	(r_1)
$/(r_1)$	16 3,387	7	(r_2)
$7(r_2)$	16 211	11 (= B)	(r_3)
$3(r_3)$,	16 13	3	(r_4)
$1(r_4)$	0	13 (= D)	(r_5)
	$1(r_0)$ $7(r_1)$ $7(r_2)$ $3(r_3)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 13,874,945 16 867,184 1 16 54,199 0 7(r_1) 16 3,387 7 7(r_2) 16 11 (= B) 3(r_3) . 0 13 (= D)

Convert Integers into Other Bases

0 🕫	
123.digits(base=16)	
[11, 7]	
€	
123.digits(base=20)	
[3, 6]	
123.digits(base=60)	
[3, 2]	
0 🕫	
3 + 2*60	-
123	

Validation

Exact Fractions: a Toy Problem

 Start from our familiar 10-based (decimal) system, for a fraction number p/q, we sometime can represent it exactly in twodecimal-place (or fewer)

$$-1/2 = 0.50$$

- -1/4 = 0.25
- -1/5 = 0.20
- Any rules?? $\frac{p}{q} = 0.01z \rightarrow z = \frac{100p}{q} \rightarrow q|100$

Divisors of 100

- Turns out that if q | 100, we can write p/q as a two-decimal-place exact decimal!
- Let's use SageMath to find all divisors of 100

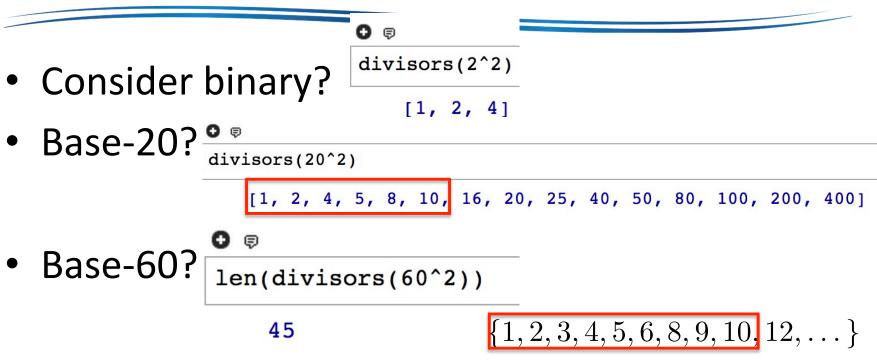
G ♥ divisors(100)

[1, 2, 4, 5, 10, 20, 25, 50, 100]

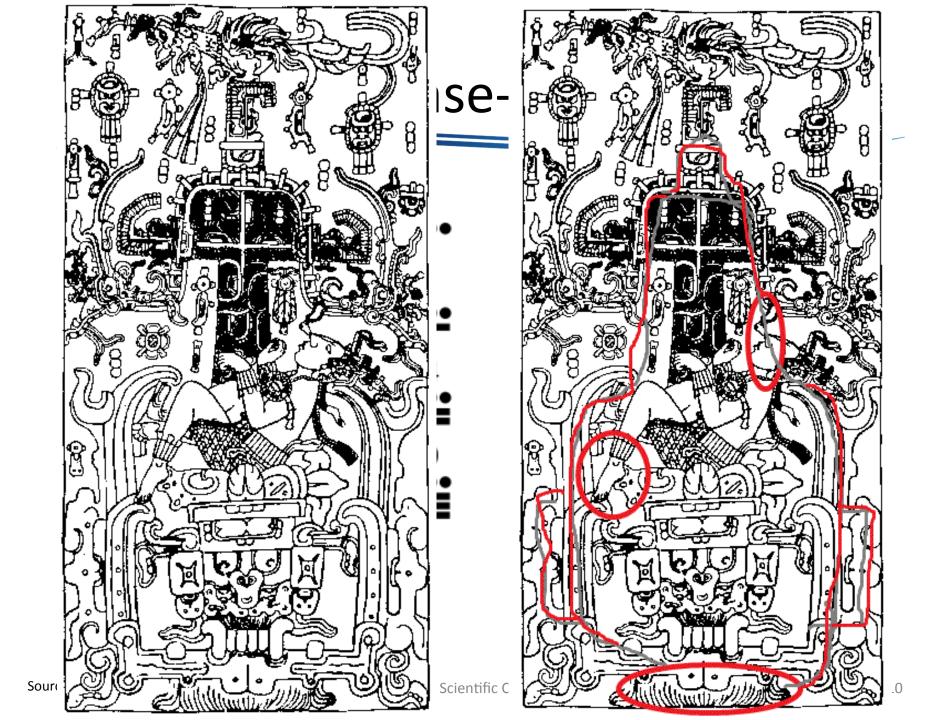
 When q is in {3, 6, 7, 8, 9}: two decimals are not enough! ← What does this mean?

– Splitting 10k TA salary among 3 students!

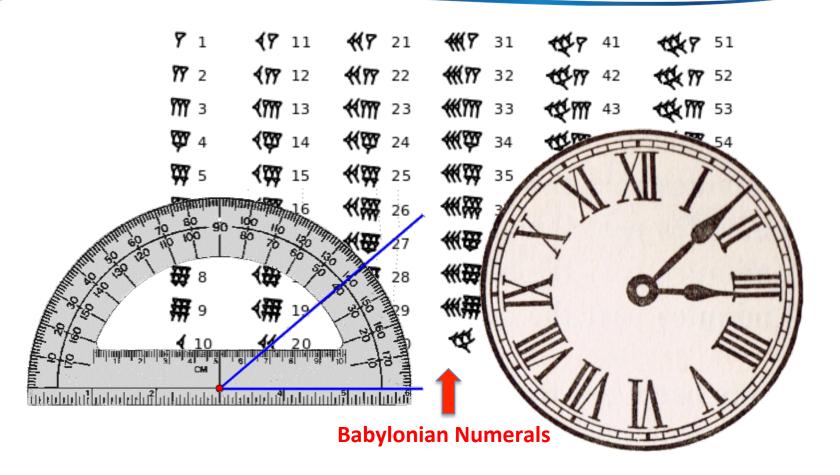
How About Other Bases



- 20 and 60 are highly composite numbers
 - Simplify counting, e.g., with base-60 system, 1/3 can be easily written!



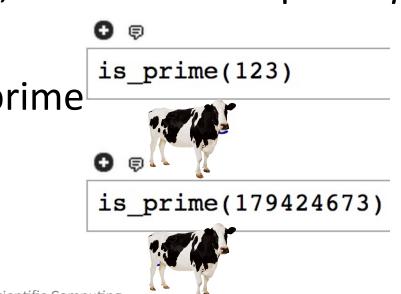
How About Base-60 System?



• We still see base-60 systems in trigonometry and time metrics

Prime and Composite

- Primes are integers (n>1) with exactly two positive divisors
- All other integers (*n*>1) are called composite
- If $n \in \mathbb{Z}^+$ is composite, then there is a prime p such that p|n
- 0 and 1 are neither prime nor composite



Fundamental Theorem of Arithmetic

- If a, b ∈ Z⁺ and p is a prime, then p|ab ⇒ p|a or p|b
 Can be generalized to n positive integers
- Any integer n>1 can be written as a (unique) product of primes $a = p_1^{t_1} p_2^{t_2} \cdots p_k^{t_k} = \prod_{i=1}^k p_i^{t_i}$ - Factorization: canonical representation
- Exercise: What is the prime factorization of 980?
- Prove that 17 | n given

 $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot n = 21 \cdot 20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14$

Prime Related Fun Functions

next	_prime(123)
2	127
9 🕫	
next	_prime(10^100)
	10000000000000000000000000000000000000
90	
nth_	prime(1)
evalua	te
2	2
) 🖗	

7907

Prime Related Fun Functions (cont.)

orime_range(1,10)
[2, 3, 5, 7]
orime_range(1050, 1100)
[1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097]
Eactor(2015)
5 * 13 * 31
actor(-9999)
-1 * 3^2 * 11 * 101

Common Divisors

- For $a, b \in \mathbb{Z}$, c > 0 is a common divisor of a and b if c|a and c|b
- Let a, b ∈ Z, where a ≠ 0 or b ≠ 0. Then c ∈ Z⁺ is a greatest common divisor (gcd) of a and b if
 c|a, c|b

– For any common divisor d of a and b, we know d|c

- For all a, b ∈ Z⁺, there exists a unique greatest common divisor of a and b, written as gcd(a,b)
 - it is actually the smallest positive integer that is a linear combination of *a* and *b* gcd(a, b) = ax + by

Common Multiples

- Let a, b ∈ Z⁺. c is a common multiple of a and b.
 c is the least common multiple if it is the smallest positive common multiple of a, b, we write c=lcm(a,b)
- If $a, b \in \mathbb{Z}^+$ and c = lcm(a, b). For any d that is a common multiple of a and b, we know $c \mid d$
- For all $a, b \in \mathbb{Z}^+$, ab = lcm(a,b)gcd(a,b)

Systematic Way to Find GCD and LCM

- Exercise: Count the # of positive divisors of 360
- Let $m = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}, n = p_1^{f_1} p_2^{f_2} \cdots p_t^{f_t}$, with $e_i, f_i \ge 0, \forall e_i, f_i$ we have $gcd(m, n) = \prod_{i=1}^{t} p_i^{a_i}, \text{ and } lcm(m, n) = \prod_{i=1}^{t} p_i^{b_i},$

where $a_i = \min(e_i, f_i), b_i = \max(e_i, f_i)$ - Find the gcd and lcm of $491891400 = 2^3 3^3 5^2 7^2 11^1 13^2$ and $1138845708 = 2^2 3^2 7^1 11^2 13^3 17^1$

GCD and LCM Related Functions

•				
gcd(120, 64)				
8				
• ₽				
lcm(120, 64)				
960				
● 🕫				
gcd(gcd(120, 55), gcd	(25, 35))	
5				
0 🕫				
gcd([120, 55, 2	5, 35])		
12630				

5

Euclidean Algorithm

Compute gcd(*a*,*b*)

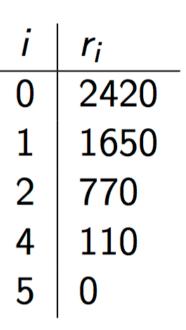
$$-r_0 = a, r_1 = b$$

- For $i \ge 1$, stop when $r_n = 0$

•
$$r_{i+1} = r_i \mod r_{i-1}$$

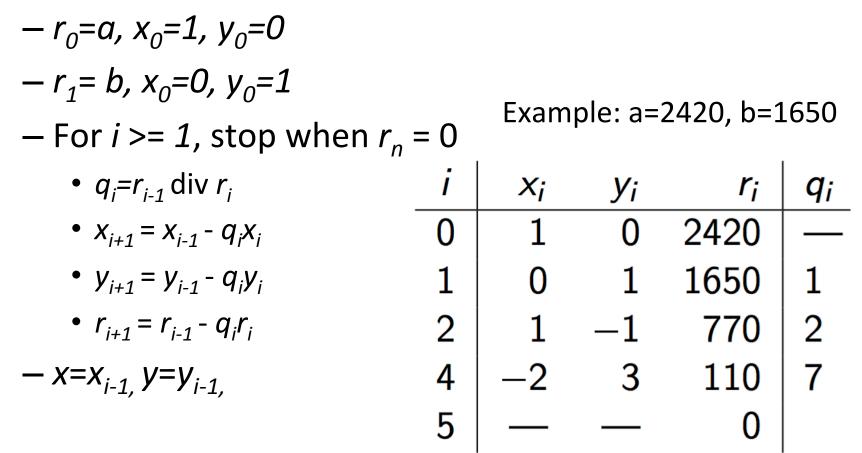
$$-\gcd(a,b)=r_{n-1}$$

• Example: gcd (1650, 2420) = 110



Extended Euclidean Algorithm

• Compute x, y for gcd(a,b) = ax + by



Linear Diophantine Equations

- For two non-zero integers a and b
- There exist integer solutions for gcd(x,y)=ax
 +by ← extended Euclidean algorithm
- ax+by=c has integer solutions iff gcd(a,b) | c
- ax+by=1 has integer solutions iff gcd(a,b) = 1

Relative prime (or co-prime)

9

gcd(1234,8765)

1

Congruence

- If *a* and *b* have the same remainder upon division by *n*, *a* is congruent to *b* modulo *n*
 - Written as $a \equiv b \pmod{n}$
 - That is n|(a-b)
- Example
 - -5|(23-8)|
 - $-23 \equiv 8 \pmod{5}$
- Congruence is compatible with additions and multiplications: a ≡ b (mod n)and c ≡ d (mod n) imply a + c ≡ b + d (mod n) and ac ≡ bd (mod n)

Why Congruence is Useful?

- Compute $12^{2016} \pmod{19}$
- Steps:

1.
$$12^2 = 144 \equiv 11 \pmod{19}$$

- **2.** $12^3 = 11 \times 12 = 132 \equiv 18 \pmod{19}$
- **3.** $12^4 = 18 \times 12 = 216 \equiv 7 \pmod{19}$
- **4.** $12^5 = 7 \times 12 = 84 \equiv 8 \pmod{19}$
- **5.** $12^6 = 8 \times 12 = 96 \equiv 1 \pmod{19}$
- We know 2016 = 6 x 336, what's the answer?

Linear Congruence

- Linear congruence refers to an equation
 ax ≡ b (mod m)
- It is the same as: m|ax b|, meaning that there exists an y, so that ax b = my

- Equivalent to ax - my = b

• The linear congruence has a solution iff gcd(a, m)|b

Slide 22

Solving Linear Congruence $ax \equiv b \pmod{m}$

- First, we apply the extended Euclidean
 algorithm to find u, v so that au + mv = gcd(a, m)
- If gcd(a,m)|b, we have a solution $x_0 = ub/gcd(a,m)$ \leftarrow validate: show $m \oint \frac{aub}{gcd(a,m)} - b$
- There are more solutions:

 $\frac{ub}{\gcd(a,m)} + i \frac{m}{\gcd(a,m)}, \text{ where } i = 0, 1, \dots, \gcd(a,m) - 1$

$35x \equiv 10 \pmod{240}$

Example of Linear Congruence

- Use extended Euclidean algorithm to get: $35 \times (-41) + 240 \times 6 = 5 = \gcd(35, 240)$
- One solution: x = ub / gcd(35, 240) = (-41 x 10)/5 = -82 ← 158 (mod 240)
- Step size: 240/5 = 48, then we have the following solutions {158, 158 + 48, 158 + 2 x 48, 158 + 3 x 48, 158 + 4 x 48} = {158, 206, 14, 62, 110} under (mod 240)

Multiplicative Inverse Modulo m

a is invertible modulo *m* is there is an inverse *x* so that *ax* ≡ 1 (mod *m*)

– a is invertible iff gcd(a, m) = 1

- x is unique, and is denoted as a⁻¹, where 0 <= a⁻¹
 |m|
- Example: Find the inverse of 65 mod 321 (if exists)

- First, we have: $65 \times (-79) + 321 \times 16 = 1$

- Then, we have $a^{-1} = -79 \mod 321 \leftarrow$ what's the ans?

Congruence Classes

- The congruence classes of mod m are:
- $[a] = \{ \forall x \equiv a \pmod{m}, x \in \mathbb{Z} \}, \text{where } a = 1, 2, \dots, m-1$
 - Equivalent classes: reflective, symmetric, and transitive
 - Note that [10] = [4] (mod 6)
- The set of congruence classes mod m is written as: $\mathbb{Z}/m\mathbb{Z} = \{[0], [1], \dots, [m-1]\}$
 - Additions and multiplications are well defined ← see the next slide

Operations on $\mathbb{Z}/m\mathbb{Z}$

Two operations: + and •

$$-[a] + [b] = [a+b]$$

 $-[a] \cdot [b] = [a \cdot b]$

- ($\mathbb{Z}/m\mathbb{Z}$, +, •) is a commutative ring
 - + and are: commutative, associative, is distributive w.r.t +, 1 is the identity of multiplication
 - [a] may not have inverse, only if gcd(a,m)=1

Euler's Phi Function

- We define φ(n) as the number of 1 ≤ z ≤ n, where gcd(z, n) = 1
 What is φ(10)?
- Write code to compute phi function

CS3330 Scientific Computing

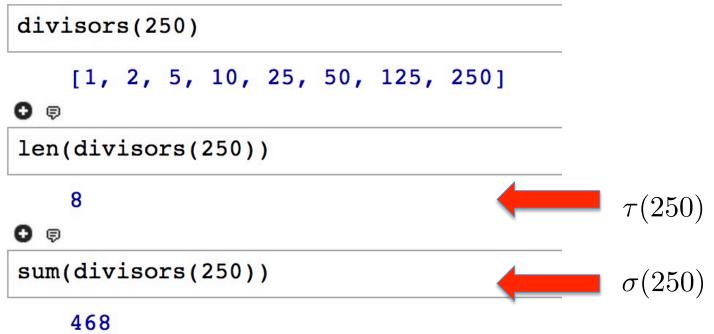
Euler's Phi Function (cont.)

- Try other x values for $\phi(x)$
- Suppose x and y are two distinct primes, what are the relation among $\phi(x), \phi(y)$, and $\phi(x \times y)$?
 - Why?
 - In fact, as long as x and y are co-prime, the above discussion holds!
- SageMath has phi built-in

0 🕫	
euler_phi(10)	
4	
• 🕫	
euler_phi(123)	
80	

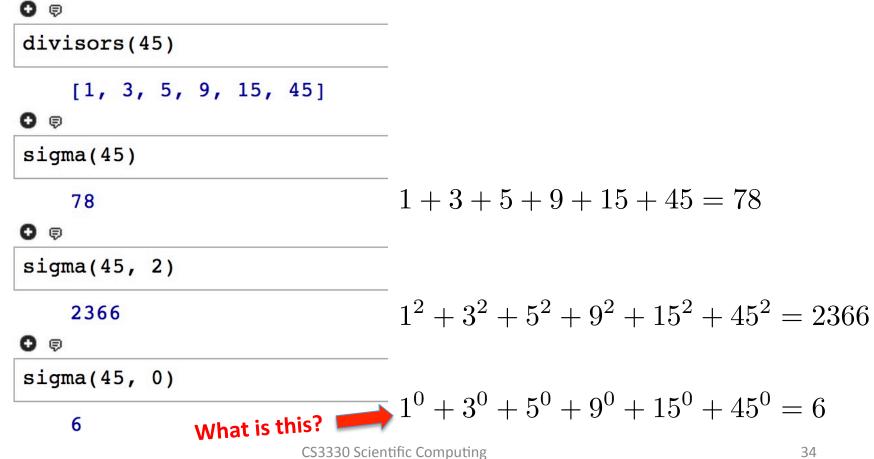
Divisors of an Integer

- We define $\tau(x)$ be the number of divisors of x



Built-in Sigma Function

Again, actually SageMath has a sigma function



Amicable Pairs of Numbers

 An interesting Arab tradition: put two numbers 220 and 284 on their rings and give them to their spouses

divisors 220 = {1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220} 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284 divisors 284 = {1, 2, 4, 71, 142, 284} 1 + 2 + 4 + 71 + 142 = 220

Summary (So Far)

- We introduced various number theory functions in SageMath
- We will use them to introduce some cryptography results
- References:
 - <u>http://www.sagemath.org</u> ← Official Web and resources
 - <u>http://www.gregorybard.com/SAGE.html</u> ← Our textbook

How to Secretly Send Messages

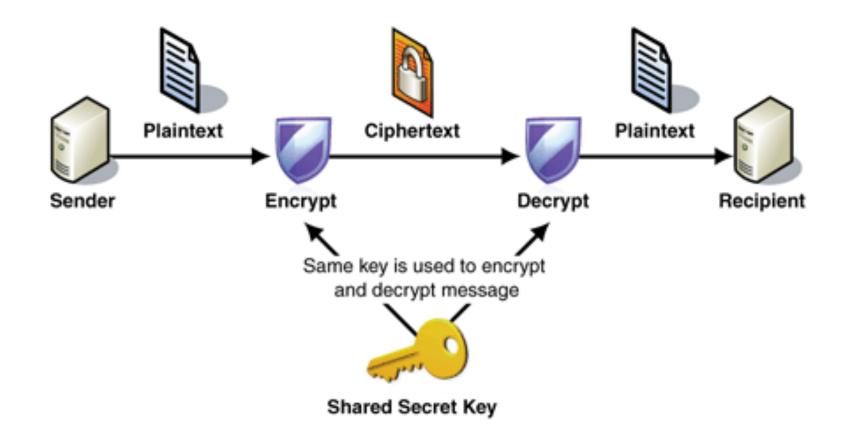
- Plaintext: human-readable messages
- Ciphertext: scrambled message
- Encryption: plaintext \rightarrow ciphertext
- Decryption: ciphertext → plaintext

Naïve Way: ASCII Encoding

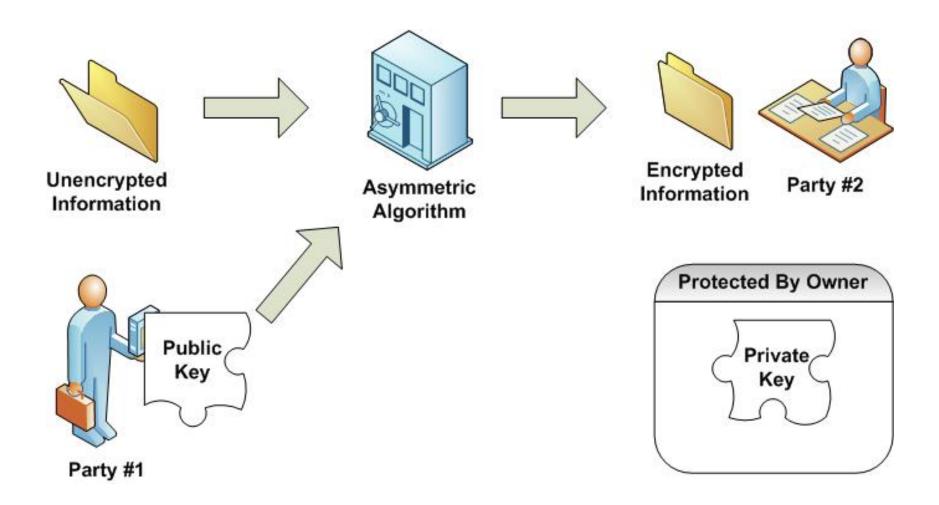
- Let Σ = {A, B, ..., Z} be the English (uppercase) alphabet ← plaintext
- Let $\Phi = \{65, 66, \dots, 90\}$ be the ASCII encodings, where $f: \Sigma \to \Phi$

- Example: "SCIENCE" → 83677369786769
- But it's too weak

Symmetric Cryptography



Asymmetric Cryptography



A Popular Asymmetric Algorithm: RSA

R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. ACM Communications, 21, 2 (February 1978), 120-126.

RSA Pseudocode

- 1. Choose two huge primes *p* and *q*, and let *n*=*pq*
- 2. Let $e \in \mathbb{Z}$ be positive s.t. $gcd(e, \phi(n)) = 1$
- 3. Find a $d \in \mathbb{Z}$ so that $de \equiv 1 \pmod{\phi(n)}$
- 4. Public key (*n*, *e*), private key (*p*, *q*, *d*)
- 5. For any integer m < n, encrypt m by $c \equiv m^e \pmod{n}$
- 6. Decrypt *c* using $m \equiv c^d \pmod{n}$

Let's try to walk through this in Sage!

Mersenne Primes

- Studied by Marin Mersenne in 17th century
- Power of two minus 1: $M_m = 2^m 1$
- If *M_m* is a prime, the it's called Mersenne primes
 - Sounds like a good way to create huge primes
 - is_prime(.) tells us if a number is prime
- Alternatively, we may use random_prime(...)

Generate the Primes for Keys

```
sage: p = 2^31 - 1
```

```
sage: is_prime(p)
```

True

```
sage: q = 2^61 -1
```

sage: is_prime(q)

BTW, far-apart p and q is very bad choices in the sense of security

True

```
sage: n = p*q
```

sage: n

4951760154835678088235319297

RSA Pseudocode, Step 2

- 1. Choose two huge primes *p* and *q*, and let *n*=*pq*
- 2. Let $e \in \mathbb{Z}$ be positive s.t. $gcd(e, \phi(n)) = 1$
- 3. Find a $d \in \mathbb{Z}$ so that $de \equiv 1 \pmod{\phi(n)}$
- 4. Public key (*n*, *e*), private key (*p*, *q*, *d*)
- 5. For any integer m < n, encrypt m by $c \equiv m^e \pmod{n}$
- 6. Decrypt *c* using $m \equiv c^d \pmod{n}$

Find a Coprime of Euler Phi

- We learned how to calculate euler_phi(.)
- Let's randomly pick a number < phi, and wish they are coprime
- We stop only when we find a coprime *e*
 - Usage of while loop....

While-Loop to Find e

```
sage: phi=euler phi(n); phi
4951760152529835076874141700
sage: e=int(random() * (phi-1)) + 1 ( _____
                                      What does this do?
sage: while gcd(e, phi) !=1 :
      e=int(random() * (phi-1)) + 1
sage: e
```

3093458420861290024932474881

RSA Pseudocode, Step 3

- 1. Choose two huge primes *p* and *q*, and let *n*=*pq*
- 2. Let $e \in \mathbb{Z}$ be positive s.t. $gcd(e, \phi(n)) = 1$
- 3. Find a $d \in \mathbb{Z}$ so that $de \equiv 1 \pmod{\phi(n)}$
- 4. Public key (*n*, *e*), private key (*p*, *q*, *d*)
- 5. For any integer m < n, encrypt m by $c \equiv m^e \pmod{n}$
- 6. Decrypt *c* using $m \equiv c^d \pmod{n}$

How to Find *d*?

- Sounds tricky: $de \equiv 1 \pmod{\phi(n)}$
 - $-\phi(n)|de-1$
 - or $de 1 = k \times \phi(n)$ for some integer k
 - or $de k\phi(n) = 1$
- Think again
 - What are given? $\leftarrow e$ and *phi*

– What do we want to determine? $\leftarrow d$ and k

- How can we find two integers d and k?
 - Recall that e and phi are coprime

Extended Euclidean Algorithm!

- We know gcd(a, b) = xa + yb for some x and y
- Sage command xgcd(a, b) returns (gcd(a,b), x, y) as a 3-tuple

```
sage: tuple=xgcd(e, phi); tuple
(1, -1652278469976548922862474579,
1032209676784414363356071253)
sage: d = Integer(mod(tuple[1], phi)); d
3299481682553286154011667121  Found our d
sage: mod(d*e, phi)
1  Validate d
```

RSA Pseudocode, Step 4

- 1. Choose two huge primes *p* and *q*, and let *n*=*pq*
- 2. Let $e \in \mathbb{Z}$ be positive s.t. $gcd(e, \phi(n)) = 1$
- 3. Find a $d \in \mathbb{Z}$ so that $de \equiv 1 \pmod{\phi(n)}$
- 4. Public key (n, e), private key (p, q, d)
- 5. For any integer m < n, encrypt m by $c \equiv m^e \pmod{n}$
- 6. Decrypt *c* using $m \equiv c^d \pmod{n}$

Public and Private Keys

sage: (n,e) Public Key
(4951760154835678088235319297,
3093458420861290024932474881)

sage: (p,q,d) Private Key
(2147483647, 2305843009213693951,
3299481682553286154011667121)

RSA Pseudocode, Step 5

- 1. Choose two huge primes *p* and *q*, and let *n*=*pq*
- 2. Let $e \in \mathbb{Z}$ be positive s.t. $gcd(e, \phi(n)) = 1$
- 3. Find a $d \in \mathbb{Z}$ so that $de \equiv 1 \pmod{\phi(n)}$
- 4. Public key (*n*, *e*), private key (*p*, *q*, *d*)
- 5. For any integer m < n, encrypt m by $c \equiv m^e \pmod{n}$
- 6. Decrypt c using $m \equiv c^d \pmod{n}$

Encrypt the Message (and Fail)

- "SCIENCE" → m=83677369786769
- $c \equiv m^e \pmod{n}$

sage: m=83677369786769 sage: c=mod(m^e, n)

RuntimeError Traceback (most recent call last) <ipython-input-19-c5605db94841> in <module>()

----> 1 c=mod(m**e, n)

/usr/lib/sagemath/local/lib/python2.7/site-packages/sage/rings/ integer.so in sage.rings.integer.Integer.___pow___ (sage/rings/integer.c: 14001)()

RuntimeError: exponent must be at most 9223372036854775807

Repeated Squaring

- Start from *d* = 1
- Convert *b* into binary $(b_1, b_2, ..., b_k)$
- Iterate *i* from 1 to k
 - d = d * d mod n
 Move 1 digit toward left

$$- \text{ If } b_i = 1, \text{ let } d = d * a \mod n$$

Example of Repeated Squaring

- Derive $3^6 \leftarrow 6 = (110)_2$
- Step 1: d=1
- Step 2: i=1, d=1*1 = 1, d = 1*3 = 3
- Step 3: i=2, d=3*3 = 9, d=9*3 = 27
- Step 4: I=3, d=27*27=729

Note that I ignore modulus here for brevity

Repeated Square Function

- Save the following code as rsmod.sage ← Uah, pay attentions to indents, like all python sources
- Load it using %runfile rsmod.sage
- Test it

```
def rsmod(a, b, n):
    d=1
    for i in list(Integer.binary(b)):
        d=mod(d*d, n)
        if Integer(i) == 1:
            d = mod(d*a, n)
        return Integer(d)
```

sage: %runfile rsmod.sage
sage: rsmod(3,6,100000)
729

Now We are Back on Track

Use *e* and *n* (=*pq*) to encrypt *m* into *c* sage: c=rsmod(m, e, n)

sage: c

1406082576299748012744893983

 Last step, decode c using d and n sage: m2=rsmod(c, d, n); m2==m True

Recap: RSA Pseudocode

- 1. Choose two huge primes *p* and *q*, and let *n*=*pq*
- 2. Let $e \in \mathbb{Z}$ be positive s.t. $gcd(e, \phi(n)) = 1$
- 3. Find a $d \in \mathbb{Z}$ so that $de \equiv 1 \pmod{\phi(n)}$
- 4. Public key (*n*, *e*), private key (*p*, *q*, *d*)
- 5. For any integer m < n, encrypt m by $c \equiv m^e \pmod{n}$
- 6. Decrypt *c* using $m \equiv c^d \pmod{n}$

We have done this!

Naïve Way to Break It

• Figure out the *p* and *q* values. But, how hard is factorization?

sage: time factor(random_prime(2^32)*random_prime(2^32))
CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s
sage: time factor(random_prime(2^64)*random_prime(2^64))
CPU times: user 0.05 s, sys: 0.00 s, total: 0.05 s
sage: time factor(random_prime(2^96)*random_prime(2^96))
CPU times: user 3.54 s, sys: 0.04 s, total: 3.58 s
sage: time factor(random_prime(2^128)*random_prime(2^128))
CPU times: user 534.39 s, sys: 0.12 s, total: 534.51 s

 Well there are many primes between 2⁵¹¹ and 2⁵¹² ← Attackers cannot be that lucky

something

Flawed Random Number Generators

- 1995 Goldberg-Wagner: During any particular second, the Netscape browser generates only about 2⁴⁷ possible keys
- 2008 Bello: Debian and Ubuntu generate <2²⁰ possible keys for SSH, OpenVPN, etc
- What we can do is:
 - Generate many private keys on a device
 - Check if any of these private keys divide n
 - Finding *p* (and *q*) is no longer impossible

Pollard's *p-1* Attack

- Due to John Pollard in 1974
- Only work on special primes ← Smooth primes
- A number is k-smooth if all of its prime factors are smaller than k
- Example: 10, 100, and 2¹⁰²⁴ are all 6-smooth, but 14 is not

Background of Pollard's *p*-1 Attack

- RSA's *n* can be readily factorized if *p*-1 or *q*-1 are smooth ← only have small factors
 Wait, but we don't know *p* nor *q*, right? Indeed ...
- Checking if an integer k is B-smooth may be to computationally demanding
 - Compare it against if k | B!

Integer k Divides B!

Lemma: *k* | *B*! implies *k* is *B*-smooth Proof:

- Assume k is not B-smooth, then there existing an integer f|k, where f > B.
- f does not divide any b' <= B.
- Since we know p|ab iff p|a or p|b, k does not divide B! for sure.

Note: the converse is false, proof is left as exercise

Fermat's Little Theorem

Theorem: Given a prime number p, and any

$$a \not\equiv 0 \pmod{p}$$
, we know $a^p \equiv a \pmod{p}$
or $a^{p-1} \equiv 1 \pmod{p}$

Proof:

The first *p*-1 positive multiples of *a* are: *a*, 2*a*, 3*a*, ..., (*p*-1)*a*. These multiples are all distinct, because if $xa = ya \pmod{p}$, we know $x=y \pmod{p}$ is a prime).

Fermat's Little Theorem (cont.)

The *p*-1 multiples are congruent to 1, 2, ..., *p*-1, in some order (the precise permutation is not important). Let's multiply all of them together and we have $a \cdot 2a \cdots (p-1)a = 1 \cdot 2 \cdots (p-1) \pmod{p}$, and then $a^{p-1}(p-1)! = (p-1)! \pmod{p}$. Getting rid of (p-1)! at both sides yields the theorem.

How Fermat's Little Theorem Helps?

- Say *p*-1 | *B*!, there is a *k* so that *k*(*p*-1) = *B*!
- Then we have $2^{B!} = 2^{k(p-1)} = (2^{p-1})^k \equiv 1^k \equiv 1 \pmod{p}$
- Or $c = (2^{B!} 1)$ is a multiple of p
 - Both in ordinary integers and under mod *p*I skip some technical details
- OK. What I'm talking about? Since n=pq, a multiple of p; gcd(c, n) is a multiple of p

The Pollard's p-1 Attack

- We compute $c=2^{B!}-1 \mod n$
- We compute gcd(*c*,*n*)
- If it is between 1 and n, it is p (because q is a prime) ← we can then compute q = n/p
- We have broken the public key!
- But, if gcd(c,n)=n, we fail ← this only happens if both p-1 and q-1 divide B!
 - Well, we ignore these corner cases for brevity.
 Just remember *p*-1 does not always work

There is a Catch.....

- How to compute $c=2^{B!}-1 \mod n$? Is it realistic?
- Remember *p*-1 must be *B*-smooth, and *B* is not going to be small! $- \operatorname{Say} 2^{(10000!)} \mod n$ $c_1 = 2^1 \pmod{2}$
- Can we really do this? NO....
- Need the last twist....

$$c_1 = 2^1 \pmod{n}$$

 $c_2 = (c_1)^2 \pmod{n}$
 $c_3 = (c_2)^3 \pmod{n}$
 $c_4 = (c_3)^4 \pmod{n}$
 $c_8 = (c_{B-1})^B \pmod{n}$

The Last Twist

$$\begin{array}{l} c_1 \equiv 2^1 \pmod{n} \\ c_2 \equiv (c_1)^2 \pmod{n} \\ c_3 \equiv (c_2)^3 \pmod{n} \\ c_4 \equiv (c_3)^4 \pmod{n} \\ \vdots \\ c_B \equiv (c_{B-1})^B \pmod{n} \\ c_4 \equiv (c_3)^4 \equiv (((c_1)^2)^3)^4 \equiv (((((2^1)^2)^3)^4) \\ \end{array}$$
Similarly $C_B \equiv 2^{B!} \pmod{n}$, and we can recursively calculate C_B

CS3330 Scientific Computing

True Yeah, it works

sage: $p^*q == n$

sage: q=n/p; q 350464090441480248555642900357719682857

1267650600228229401496703217601

sage: B_fac=factorial(2^25) Well, I did not apply the sage: c=Integer(pow(2,B fac,n)) - 1 last optimization sage: p=gcd(c,n); p

Sage:n=44426601460658291157725536008128017 2978907874637194279031281180366057

Put Pollard's *p*-1 Together

Summary (Second Half)

- We introduced symmetric and asymmetric cryptography systems
- We walked through RSA algorithm
- We discussed one of the RSA attacks
- There are many other attacks ← out of scope
- References:
 - <u>http://www.gregorybard.com/SAGE.html</u> ← Our textbook
 - <u>http://doc.sagemath.org/html/en/thematic_tutorials/</u> <u>numtheory_rsa.html</u> ← Introduction on RSA
 - <u>https://www.hyperelliptic.org/tanja/vortraege/</u> <u>facthacks-29C3.pdf</u> ← Many more attacks

SageMath #2 Homework (S2)

- 1. (2%) Write a SageMath program to find out at least 3 amicable pairs, including (220, 284)
- 2. (1%) Use Pollard's *p*-1 attack to factorize this number:

n=86202154764363158239699821220872291 4288258644234791307950582916442747222 039795609417741932278317121

You need to explain and run your code in front of the TA, or you get zero point