
NTHU, Department of Computer Science Fall 2017
CS3330 Scientific Computing

Sample Homework Solutions
Chapter 1: Scientific Computing

Yu-Rong Wang and Cheng-Hsin Hsu

The solutions are for your reference only. If you have any doubts or thoughts about the
sample answers, please let the instructor and the TA know. More importantly, like other
math questions, the homework questions may be solved in multiple ways; potentially because
of different assumptions (made by you, the students). Do not assume the sample solutions
here are the only correct answers. Please discuss with others about alternative solutions.

We will not grade your homework assignments. You are, however, highly encouraged
to discuss with us during the Lab session and office hours. The correlation between the
homework assignments and quiz/midterm/final questions is high. So you do want to practice
more and sooner.

1 Review Questions

• 1.5 True. The propagated data errors come from the imperfect inputs, rather than the
algorithms.

• 1.10 False. The underflow level is the smallest positive number that can be represented
by the floating number system.

• 1.15 Absolute error shows the absolute difference between the approximate value and
the true value. It may happen that the absolute error is large but has little effect on
the results. Relative error shows the proportion of absolute error to true value. If the
relative error is larger, the approximation is worse.

• 1.20 (Relative) condition number is the ratio of relative change in the solution to
the relative change in the input. It is usually the most appropriate measure for the
sensitivity of a problem. However, it is not defined if either the input or output is zero.
In this case, the absolute condition number (defined by the ratio of changes without
normalization) is an appropriate measure of sensitivity.

• 1.25 See Example 1.9 and Figure 1.3. The distribution is not uniform along the real
line. It is denser when being closer to zero, and becomes sparser when being farther
from zero.

1

• 1.30 The unit roundoff ǫmach determines the maximum possible relative error in repre-
senting a given nonzero real number in a floating-point system. More specifically, we
know:

∣

∣

∣

∣

fl(x)− x

x

∣

∣

∣

∣

≤ ǫmach. (1)

ǫmach, also known as machine precision and machine epsilon is the smallest number
such that:

fl(1 + ǫ) > 1. (2)

• 1.35 No. A counter example: let’s divide (1.00)2 × 2−1 = (0.5)10 by (1.10)2 × 2−1 =
(0.75)10 in a floating-point system with β = 2, p = 3, L = -1, U = 1 and rounding by
chopping. The result of the floating-point division is (1.01)2 × 2−1 = (0.625)10, which
is different from the real arithmetic result of 2/3.

• 1.40 The relative error in representing any nonzero number x is less than or equal to
unit roundoff ǫmach = 1

2
β1−p.

• 1.45 The sequence should sum from the smallest number to the largest number, which
can minimize rounding error.

• 1.50 One of the factors is normalization because normalization will lead in a gap
between the underflow level UFL and zero. Another factor is larger exponents, the
steps (granularity) are wider (coarser).

2 Exercises

• 1.6

(a)

forward error:

x ŷ y ∆y
0.1 0,1 sin (0.1) ≈ 0.09983342 0.00016658
0.5 0.5 sin (0.5) ≈ 0.47942554 0.02057446
1.0 1.0 sin (1.0) ≈ 0.84147098 0.15852902

backward error:

ŷ x̂ = arcsin(ŷ) ∆x
0.1 arcsin (0.1) ≈ 0.10016742 0.00016742
0.5 arcsin (0.5) ≈ 0.52359878 0.02359878
1.0 arcsin (1.0) ≈ 1.57079633 0.57079633

(b)

forward error:

x ŷ y ∆y
0.1 0.09983333 sin (0.1) ≈ 0.09983342 -0.00000009
0.5 0.47916667 sin (0.5) ≈ 0.47942554 -0.00025887
1.0 0.83333333 sin (1.0) ≈ 0.84147098 -0.00813765

2

backward error:

ŷ x̂ = arcsin(ŷ) ∆x
0.1 arcsin (0.09983333) ≈ 0.09999991 -0.00000009
0.5 arcsin (0.47916667) ≈ 0.49970505 -0.00029495
1.0 arcsin (0.83333333) ≈ 0.98511078 -0.01488922

• 1.12 Almost in all cases, (x− y)(x+ y) is more accurate, because x2 − y2 suffers from
catastrophic cancellation. Here, cancellation is due to potentially large rounding errors
of x2 and y2, especially when x and y can be exactly represented. Now, check (x− y)
and (x+ y), their rounding error is at most ǫmach. Multiplying them together leads to
even smaller rounding error of ǫ2

mach
.

Now, let’s consider a real example: assume a 2-digit system with x = 8.9 × 102 and
y = 8.8× 102. We have:

x2 − y2 = 7.9× 105 − 7.7× 105 = 2× 104, (3)

and
(x+ y)(x− y) = (17× 102)(1× 10) = 1.7× 104. (4)

The actual answer is 1.77 × 104. Therefore (x + y)(x − y) is more accurate in this
example.
Exercise: can you find an example where x2 − y2 is more accurate?

• 1.18 There are 2× 223 × (127− 126 + 1) = 127× 225 normalized machine numbers in
a single-precision IEEE floating-point system. If subnormals are allowed, we will have
2× (223 − 1) = 224 − 2 additional machine numbers.

• 1.24 Without loss of generality, we assume x and y are both positive and 1 ≤ x/y ≤ β.
We can do this, because if β ≤ x/y < 1, we just relabel x as y, and y as x. Let p ∈ N

be the precision, β = 2 be the base. We write:

x =
(

d0 +
d1
2

+
d2
22

+ · · ·+
dp−1

2p−1

)

2e, (5)

and

y =
(

d′
0
+

d′
1

2
+

d′
2

22
+ · · ·+

d′p−1

2p−1

)

2e
′

. (6)

Since 1 ≤ x/y ≤ 2, we know e = e′ or e = e′ + 1. For the former case, we have:

x− y =
(

(d0 − d′
0
) +

d1 − d′
1

2
+

d2 − d′
2

22
+ · · ·+

dp−1 − d′p−1

2p−1

)

2e, (7)

which is exact as di, d
′

i ∈ {0, 1}, ∀i.

Now, consider the case where e = e′ + 1. x/y < 2 actually means: if we shift

d′
0
+ d′

1
, . . . , d′p−1

to the right for 1 digit, compare each digit d′i (after being shifted)

3

against di from left to right, we will be able to find at least one digit d′i > di; actually,
because β = 2, we know d′i = 1 and di = 0. Now, we pick the smallest i that have this
property, and denote it as t, where 0 ≤ t ≤ p−1. We will see in a second, why we need t

Coming back to our problem, and let’s align the digits of x and y:

d0 d1 dt dp−1

− d′
0

d′
1

. . . d′t−1
d′t . . . d′p−2

d′p−1

d̂0 d̂1 d̂t d̂p−1 d̂p

(8)

Our goal is to show that d̂0 = 0, so that x − y can be represented with p binary
digits. If d0 = 0, we immediately have d̂0 = 0; so we only need so consider the case
d0 = 1. Now we scan from d1, d2, and up to dt. We stop at du = 0 (first zero, i.e.,
di = 1∀0 ≤ i < u). We note that u exists, because the worst case is u = t. Now,
observe that the subtraction of the first u digits:

d0 d1 du
− d′

0
d′
1

. . . d′u−1
d′u . . .

(9)

can be written as:
1 1 1 0 . . .

− 1 1 . . . 1 1 . . .

0 1 1 1 . . .

(10)

Notice that d̂0 = 0, because we borrow from du−1, du−2, . . . , d1, and d0. This yields
our proof with β = 2.

When β ≥ 3, it should not be hard to see that the cascading borrows happened with
β = 2 may not happen. Let β = 3 and p = 3. If we write x = (121)3 × 31 and
y = (122)3 × 30. We have:

x− y = (1210)3 − (122)3 = (1011)3, (11)

which can not be exactly represented with p = 3.

4

