
NTHU, Department of Computer Science Fall 2017
CS3330 Scientific Computing

Sample Solutions of HW of Chapter 2: Systems of Linear
Equations

Yu-Rong Wang and Cheng-Hsin Hsu

Note that, the solutions are for your reference only. If you have any doubts about the
correctness of the answers, please let the instructor and the TA know. More importantly,
like other math questions, the homework questions may be solved in various ways. Do not
assume the sample solutions here are the only correct answers; discuss with others about
alternate solutions.

We will not grade your homework assignment, but you are highly encouraged to discuss
with us during the Lab hours. The correlation between the homework assignments and
quiz/midterm/final questions is high. So you do want to practice more and sooner.

1 Review Questions

• 2.5 False. For example, let A =

[

1 1
1 0

]

, then det(A) = −1 6= 0. Thus, A is not

singular.

• 2.10 True. row dependent ⇒ det(A) = 0 ⇒ singular ⇒ column dependent

• 2.15 False. See example 2.14, A =

[

1 1
1 1

]

, and A is singular since det(A) = 0.

However, A =

[

1 1
1 1

]

=

[

1 0
1 1

] [

1 1
0 0

]

= LU

• 2.20 True. The complexity of explicit matrix inversion is about O(n3), and the ma-
jority of the work is due to factorization.

• 2.25 True. cond(A) = ‖A‖ · ‖A−1‖ = ‖A−1‖ · ‖A‖ = cond(A−1)

• 2.30 They are the same (bad), as A is singular in either case. The back-substitution
will fail because of that.

• 2.35 Let A =
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• 2.40 (1) When there is a zero on the diagonal, the multiplier m is undefined. (2) Even
without zero element on the primary diagonal, the multiplier may be very (arbitrarily)
large, which leads to overflow in subsequent calculations. That’s why we need pivoting.

• 2.45 Firstly, we should compute Bc and get the result, say d. Then we compute A−1d
by LU factorization of A, followed by n forward- and back-substitutions.

• 2.50 Yes, Let x =

[

1
0

]

, then ‖x‖1 = 1 + 0 = 1 = ‖x‖∞ = max{1, 0}

• 2.55 Computing the condition number of a general matrix is nontrival because the
task involves the computing of the inverse of the matrix.

• 2.60 fl(A) is (not singular, but) nearly singular, so that condition number shall be
very large.

• 2.65 cond(A) ≥ 1012

• 2.70

(a) 2n − 1: n to store the entries of the first row, n − 1 to store the scalar γ of the i
row such that γrow1 = rowi, where i 6= 1.
(b) 3n−2: include n multiplications and n−1 additions when computing the first row
and n− 1 multiplications when letting the scalar multiply the answer of the first row.

• 2.75 n square roots are required to compute the Cholesky factorization of an n × n
symmetric positive definite matrix.

• 2.80

(a) O(n2)
(b) O(n2)
(c) O(n3) i.e., we have to compute the whole linear system again.

2 Exercises

• 2.3 Since A is singular, the solution of Ax = b is not unique. Thus, there are two
nonzero solutions x and y, x 6= y, such that Ax = Ay = b. Let z = x − y, then
Az = A(x− y) = Ax−Ay = b− b = o. Moreover, for any scalar γ, we have a solution
x+ γz such that A(x+ γz) = Ax+ Aγz = Ax+ γo = b.

• 2.7

(a) det(A) = 1− (1 + ǫ)(1− ǫ) = 1− (1− ǫ+ ǫ− ǫ2) = ǫ2

(b) In floating-point arithmetic, when |ǫ| < √
ǫmach, the computed value of det(A) is

zero.

(c) A =

[

1 1 + ǫ
1− ǫ 1

]

=

[

1 0
−1 + ǫ 1

] [

1 1 + ǫ
0 ǫ2

]

= LU
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(d) In floating-point arithmetic, when |ǫ| < √
ǫmach, the computed value of U is zero.

• 2.16

(a)

[

1 a
c b

]

=

[

1 0
−c 1

] [

1 a
0 b− ac

]

= LU

(b) When b− ac = 0, this matrix is singular (Since det(A) = b− ac = 0.)

• 2.27 Notice that vTA−1u and (1− vTA−1u)−1 are scalars.
(A− uvT )(A−1 + A−1u(1− vTA−1u)−1vTA−1)

= I + uvTA−1

1−vTA−1u
− uvTA−1 − uvTA−1uvTA−1

1−vTA−1u

= I + uvTA−1

1−vTA−1u
+ −uvTA−1+uvTA−1vTA−1u

1−vTA−1u
− vTA−1u uvTA−1

1−vTA−1u

= I + uvTA−1

1−vTA−1u
− uvTA−1

1−vTA−1u
+ vTA−1u uvTA−1

1−vTA−1u
− vTA−1u uvTA−1

1−vTA−1u

= I

• 2.35 A = BBT = (BBT )T = AT ⇒ A is symmetric. Let x 6= o be a vector, xTAx =
xTBBTx = (BTx)T (BTx) ≥ 0. However, BTx 6= 0 since B is nonsingular and x 6= 0.
Thus, A is positive definite.

• 2.42 (a) Given an upper triangular matrix U , the following algorithm overwrites U
with U−1, accessing only the upper triangular portion of the array. An analogous al-
gorithm works for a lower triangular matrix.

for k = n to 1
ukk = 1/ukk

for i = k − 1 to 1
t = 0
for j = i+ 1 to k

t = t+ uijujk

end
uik = −t/uii

end
end

(b) Given a matrix A, one could compute its LU factorization A = LU in place,
overwriting the upper triangle of A with U and the strict lower triangle of A with the
strict lower triangle of L, not storing the unit diagonal of L. The triangular matrices
U and L could then be inverted in place using the algorithms from part(a). This would
effectively give one a representation of A−1, but to obtain A−1 explicitly, one would
have to compute A−1 = U−1L−1 in place, and this is impossible because there is no
order in which to compute the product that does not overwrite some entries that will
still be needed subsequently.

3


