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Sample Solutions of HW of Chapter 7: Interpolations

Yu-Rong Wang and Cheng-Hsin Hsu

Note that, the solutions are for your reference only. If you have any doubts about the
correctness of the answers, please let the instructor and the TA know. More importantly,
like other math questions, the homework questions may be solved in various ways. Do not
assume that the sample solutions here are the only correct answers; discuss with others about
alternate solutions.

We will not grade your homework assignment, but you are highly encouraged to discuss
with us during the Lab hours. The correlation between the homework assignments and
quiz/midterm/final questions is high. So you do want to practice more and sooner.

1 Exercises

• 7.1

(a) The linear system using the monomial basis is





1 −1 1
1 0 0
1 1 1









x1

x2

x3



 =





1
0
1





Solving this system by Gaussian elimination, we obtain x = [0 0 1]T , so the
interpolating polynomial is p(t) = t2.

(b) The form of a polynomial of degree two using the Lagrange basis is

p(t) = y1
(t− t2)(t− t3)

(t1 − t2)(t1 − t3)
+ y2

(t− t1)(t− t3)

(t2 − t1)(t2 − t3)
+ y3

(t− t1)(t− t2)

(t3 − t1)(t3 − t2)
.

Substituting the data for this problem, the polynomial becomes

p(t) = 1
(t− 0)(t− 1)

(−1− 0)(−1− 1)
+ 0

(t− (−1))(t− 1)

(0− (−1))(0− 1)
+ 1

(t− (−1))(t− 0)

(1− (−1))(1− 0)

=
t(t− 1)

2
+

t(t+ 1)

2
,

which is equivalent to the polynomial in part (a).

(c) The linear system using the Newton basis is





1 0 0
1 0− (−1) 0
1 1− (−1) (1− (−1))(1− 0)









x1

x2

x3



 =





1 0 0
1 1 0
1 2 2









x1

x2

x3



 =





1
0
1




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Solving this system by forward substitution, we obtain x = [1 − 1 1]T , so the
interpolating polynomial is p(t) = 1− (t+1)+ (t+1)t, which again is equivalent
to the polynomial in part (a).

• 7.6 We need to plug M , h, and n into the bound max
t∈[t1,tn]

|f(t) − pn−1(t)| ≤ Mhn

4n
,

where |f (n)(t)| ≤ M . For this problem n = 5, so we need the fifth derivative of f(t),
f (5)(t) = cos(t). The maximum of cos(t) on [0, π/2] occurs at t = 0, where f (5)(0) = 1,
so we can take M = 1 and the bound becomes

max
t∈[t1,tn]

|f(t)− pn−1(t)| ≤
1 · (π/8)5

4 · 5
≤ 4.6695× 10−4.

The interpolant is p4(t) = 0.2871t4 − 0.20359t3 + 0.1995t2 + 0.99632t. Using the inter-
polant, |f(t)− pn−1(t)| may be found for any t. To achieve an error bound of 10−10,

Mhn

4n
= 10−10

1 · (π/(2(n− 1)))n

4n
= 10−10

πn

n(2(n− 1))n
= 4× 10−10

n = 10.63.

Therefore, at least 11 points are required to achieve the bound.

• 7.14 To transform the Chebyshev points from [−1, 1] to an arbitrary interval [a, b], we
scale by the relative width of the new interval, (b − a)/2, and translate by the center
of the new interval, (a+ b)/2, so the transformed Chebyshev points are given by

t̃i = ti
b− a

2
+

a+ b

2
, i = 1, . . . , k.

• 7.16 In keeping with the recursive definition of the B-spline functions Bk
i , all proofs

proceed by induction on k.

Property 1:

Base case: By definition, B0
i (t) = 0 for t < ti or t > ti+1.

Inductive hypothesis: Bk−1
i (t) = 0 for t < ti or t > ti+k.

From the inductive hypothesis, we have

Bk−1
i (t) = 0 for t < ti or t > ti+k,

Bk−1
i+1 (t) = 0 for t < ti+1 or t > ti+k+1,

and hence

Bk
i (t) = vki (t)B

k−1
i (t) + (1− vki+1(t))B

k−1
i+1 (t) = 0 for t < ti or t > ti+k+1.
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Property 2:

Base case: By definition, B0
i (t) = 1 > 0 for ti < t < ti+1.

Inductive hypothesis: Bk−1
i (t) > 0 for ti < t < ti+1.

From the inductive hypothesis, we have

vki (t) > 0 for t > ti ⇒ vki (t)B
k−1
i (t) > 0 for ti < t < ti+k,

(1− vki+1(t)) > 0 for t < ti+k ⇒ (1− vki+1(t))B
k−1
i+1 (t) > 0 for ti+1 < t < ti+k+1,

and hence

Bk
i (t) = vki (t)B

k−1
i (t) + (1− vki+1(t))B

k−1
i+1 (t) > 0 for ti < t < ti+k+1.

Property 3:

Base case: By definition,
∑

∞

i=−∞
B0

i (t) = 1.

Inductive hypothesis:
∑

∞

i=−∞
Bk−1

i (t) = 1.
From the inductive hypothesis, we have

∞
∑

i=−∞

Bk
i (t) =

∞
∑

i=−∞

(vki (t)B
k−1
i (t) + (1− vki+1(t))B

k−1
i+1 (t))

=
∞
∑

i=−∞

vki (t)B
k−1
i (t) +

∞
∑

i=−∞

(1− vki+1(t))B
k−1
i+1 (t)

=
∞
∑

i=−∞

vki (t)B
k−1
i (t) +

∞
∑

i=−∞

Bk−1
i+1 (t)−

∞
∑

i=−∞

vki+1(t)B
k−1
i+1 (t)

=
∞
∑

i=−∞

vki (t)B
k−1
i (t) + 1−

∞
∑

i=−∞

vki (t)B
k−1
i (t) = 1

Property 4:

Base case: From the definition, B1
i is continuous.

Inductive hypothesis: Bk−1
i is k − 2 times continuously differentiable.

As is easily established by a separate induction, for k − 2 we have

d

dx
Bk

i (t) =
k

ti+k − ti
Bk−1

i (t)−
k

ti+k+1 − ti+1

Bk−1
i+1 (t).

The derivative of Bk
i is therefore a linear combination of Bk−1

i and Bk−1
i+1 , which by

the inductive hypothesis are both continuously differentiable k − 2 times. Thus,
Bk

i is continuously differentiable k − 1 times.

Property 5:

Base case: B1
i is obviously linearly independent.

Inductive hypothesis: Bk−1
1−k , . . . , B

k−1
n−1 are linearly independent.

If f is a linear combination of Bk
1−k, . . . , B

k
n−1 such that f = 0, then we would also
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have f ′ = 0. But we saw in the proof of Property 4 that the derivative of each
Bk

i is a linear combination of Bk−1
i and Bk−1

i+1 . Since Bk−1
1−k , . . . , B

k−1
n−1 are linearly

independent by the inductive hypothesis, this implies that there can be no such
f that is a nontrivial linear combination of Bk

1−k, . . . , B
k
n−1, and hence the latter

are linearly independent.

Property 6:

This follows from the linear independence of Bk
1−k, . . . , B

k
n−1 and the dimension-

ality of the spaces involved.
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