
NTHU, Department of Computer Science Fall 2017
CS3330 Scientific Computing

Sample Solutions of Programming assignment of Midterm 1

Yu-Rong Wang and Cheng-Hsin Hsu

Note that, the solutions are for your reference only. If you have any doubts about the
correctness of the answers, please let the instructor and the TA know. More importantly,
like other math questions, the homework questions may be solved in various ways. Do not
assume that the sample solutions here are the only correct answers; discuss with others about
alternate solutions.

We will not grade your homework assignment, but you are highly encouraged to discuss
with us during the Lab hours. The correlation between the homework assignments and
quiz/midterm/final questions is high. So you do want to practice more and sooner.

1 Midterm Exam 1 (25 points + 1 bonus point)

2) B(n+1)×(n+1) =

[

An×n an×1

aT1×n
α1×1

]

a) (i) Suppose α 6 0.
∵ B is positive definite.

∴ Let y =
[

0 0 · · · 0 1
]T

n×1

⇒ 0 < yTBy =
[

0 0 · · · 0 1
]T

[

A a

aT α

]













0
0
:
0
1













=
[

aT α
]













0
0
:
0
1













= α −→←−

(ii) Suppose A is not positive definite.
∵ B is positive definite.

∴ Let z =
[

vT 0
]

, where v =
[

1 1 · · · 1
]T

n×1

⇒ 0 < zTBz =
[

vT 0
]

[

A a

aT α

] [

v

0

]

=
[

vTA vTa
]

[

v

0

]

= vTAv −→←−

Therefore, by (i) and (ii), α must be positive and the n × n matrix A must be
positive definite.

b) Let A = LLT and l = L−1a

⇒

[

L O

lT
√
α− lT l

] [

LT l

O
√
α− lT l

]

=

[

A a

aT α

]

= B

1

2 Computer Problem
1)

function midterm(n,t) % performance of algorithms for matrix

multiplication

iterations = [1:t]’; sdotTime = zeros(t,1); saxpyTime = zeros(t,1);

disp(’Time for using sdot: Time for using saxpy:’);

for l=1:t

A = rand(n,n); B = rand(n,n); C = zeros(n,n);

sdotTime(l,1) = sdot(A, B, C, n);

saxpyTime(l,1) = saxpy(A, B, C, n);

fprintf(’ %f %f\n’, sdotTime, saxpyTime);

end

plot(iterations, sdotTime, ’b-’, iterations, saxpyTime, ’r--’);

xlabel(’iteration’); ylabel(’time’);

legend(’Time for using sdot’, ’Time for using saxpy’);

end

%% sdot program

function sdotTime = sdot(A, B, C, n)

tic;

for i=1:n

for j=1:n

C(i,j) = A(i,:)*B(:,j);

end

end

sdotTime = toc;

end

%% saxpy program

function saxyTime = saxpy(A, B, C, n)

tic;

for j=1:n

C(:,j) = A*B(:,j);

end

saxyTime = toc;

end

2

0 10 20 30 40 50 60 70 80 90 100

iteration

0

1

2

3

4

5

6

ti
m

e

Time for using sdot

Time for using saxpy

Figure 1: Time of sdot and saxpy

2) We implemented matrix multiplication C=AB 100 times, where A, B and C are 500x500
matrices and A and B comprise random entries(in [0, 1]). We plotted the time used
by sdot and saxpy in Figure 1, and the following table shows the time and the ratio of
the first ten times of the matrix multiplications.
Time for using sdot: Time for using saxpy: Ratio(sdot/saxpy):

5.289226 0.102398 51.653570
5.395224 0.127130 42.438571
5.178193 0.116464 44.461590
5.370549 0.136596 39.317103
5.194405 0.111824 46.451492
5.097250 0.115873 43.989927
5.267862 0.145511 36.202621
5.062432 0.107030 47.299100
5.317901 0.116621 45.600001
5.344271 0.099043 53.959345

3) We found that the time using saxpy is much less than the time using sdot. The
reason is that a MATLAB matrix is stored (by columns) in contiguous locations in the
computer’s RAM, sdot which intent to compute each row of C takes much more time
than that saxpy which intent to compute each column of C takes.

3

