Worksheet #10 (2017/11/6)

Name: ID:

CS3330 Scientific Computing, Instructor: Cheng-Hsin Hsu

• Supplementary materials to warm you up for least squares.

1) Try to minimize
$$f(x, y, z) = \frac{1}{2} \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 4 & 1 & 2 \\ 1 & 8 & 5 \\ 2 & 5 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} - \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}.$$

2) Let's look at a very primitive quadratic function $f(x) = \frac{1}{2}ax^2 - bx$. What is its minimum?

3) Revisit
$$f(x, y, z) = \frac{1}{2} \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 4 & 1 & 2 \\ 1 & 8 & 5 \\ 2 & 5 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} - \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$
. Rewrite it as $\frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} - \mathbf{x}^T \mathbf{A}\mathbf{x}$

 $\mathbf{x}^T \mathbf{b}$. What is its minimum?

4) Algebraic view of least squares: For a very "tall" Ax = b, we let r = b - Ax. Then, we try to minimize $r^T r$, which is the sum of square of deviation along the *y*-axis. Show that $x = (A^T A)^{-1} A^T b$. 5) Geometric view: Find the α_1 and α_2 for the projection of \vec{b} , so that $\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2$ lines on the plane. Connect the dots with the famous formula $\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$.

