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Abstracted Version of the Spectrum Example 

Suppose that C requires 8 data values from A to execute. 
Suppose further that C takes much longer to execute 
than A or B. Then a schedule might look like this: 

… 

1 1 

8 
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Dataflow Models 

Buffered communication between concurrent components (actors). 
 
An actor can fire whenever it has enough data (tokens) in its input 
buffers. It then produces some data on its output buffers. 
 
In principle, buffers are unbounded. But for implementation on a 
computer, we want them bounded (and as small as possible). 

Actor A 
FIFO buffer 

Actor B 
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Dataflow 

Firing rules: 
the number of 
tokens 
required to fire 
an actor.   
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Dataflow: many variants, still active area of research 
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Synchronous Dataflow (SDF) 

If the number of tokens consumed and produced by the 
firing of an actor is constant, then static analysis can tell 
us whether we can schedule the firings to get a useful 
execution, and if so, then a finite representation of a 
schedule for such an execution can be created. 
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Balance Equations 

Let qA, qB be the number of firings of actors A and B.  
Let pC, cC be the number of tokens produced and 
consumed on a connection C. 
Then the system is in balance if for all connections C 

qA pC = qB cC 
where A produces tokens on C and B consumes them. 
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Example 

Consider this example, where actors and arcs are 
numbered: 
 
 
 
 
 
 
The balance equations imply that actor 3 must fire twice 
as often as the other two actors. 
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Compactly Representing the Balance Equations 
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Question on material from the last time … 

What is the production/consumption matrix in this case? 

1 1 
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Example 

A solution to the balance equations: 
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This tells us that actor 3 must fire twice as often as actors 1 and 2. 
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Example 

But there are many solutions to the balance equations: 
 
 
 
 
For “well-behaved” models, there is a unique least 
positive integer solution. 
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Least Positive Integer Solution to the Balance 
Equations 

Note that if pC, cC , the number of tokens produced and 
consumed on a connection C, are non-negative integers, 
then the balance equation, 

qA pC = qB cC 
implies: 
¢   qA is rational if and only if qB is rational. 
¢   qA is positive if and only if qB is positive. 

Consequence: Within any connected component, if there 
is any non-zero solution to the balance equations, then 
there is a unique least positive integer solution. 
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Rank of a Matrix 

The rank of a matrix Γ is the number of linearly 
independent rows or columns. The equation 
 
 
is forming a linear combination of the columns of Γ. Such 
a linear combination can only yield the zero vector if the 
columns are linearly dependent (this is what is means to 
be linearly dependent). 
 
If Γ has a columns and b rows, the rank cannot exceed 
min( a, b). If the columns or rows of Γ are re-ordered, the 
resulting matrix has the same rank as Γ. 

0


=Γq
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Rank of the Production/Consumption Matrix 

Let a be the number of actors in a connected graph. Then 
the rank of the production/consumption matrix Γ is  ≤ a. 
(why?) 
 

If the model is a spanning tree (meaning that there are 
barely enough connections to make it connected) then  Γ 
has a rows and a - 1 columns.  
Theorem [Lee-Messerschmitt’87]: Its rank is a - 1. 
Exercise: Prove it. (Hint: use induction).  
 

Corollary: the rank of any production/consumption matrix 
of a connected graph is either a or a - 1. (why?) 
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Consistent Models 

Let a be the number of actors in a connected model. The 
model is consistent if Γ has rank a - 1. 
 
If the rank is a, then the balance equations have only a 
trivial solution (zero firings).  
 
When Γ has rank a - 1, then the balance equations 
always have a non-trivial solution. 
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Example of an Inconsistent Model: 
No Non-Trivial Solution to the Balance Equations 

This production/consumption matrix has rank 3, so there 
are no nontrivial solutions to the balance equations. 
 
Note that this model can execute forever, but it requires 
unbounded memory. 
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Necessary and sufficient conditions 

Consistency is a necessary condition to have a 
(bounded-memory) infinite execution. 

 
Is it sufficient? 
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Deadlock 1 

Is this diagram consistent? 

A B 

1 1 

1 1 
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Deadlock 2 

Some dataflow models cannot execute forever. In the 
above model, the feedback loop injects initial tokens, but 
not enough for the model to execute. 
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SDF: from static analysis to scheduling 

Given: SDF diagram 
Find: a bounded-buffer schedule, if it exists 
 
Step 0: check whether diagram is consistent. If not, then 
no bounded-buffer schedule exists. 
 
Step 1: find an integer solution to Γq=0.  
 
Step 2: “decompose” the solution q into a schedule, 
making sure buffers never become negative. 
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Step 2: “decomposing” the firing vector 

Example 1: 
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Step 2: “decomposing” the firing vector 

Example 2: 

What happens if we try to run 
the previous procedure 
on this example? 

A B 

1 1 

1 1 

So, we have both necessary 
and sufficient conditions for 
scheduling SDF graphs. 
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A Key Question: If More Than One Actor is 
Fireable in Step 2, How do I Select One? 

Optimization criteria that might be applied: 
¢  Minimize buffer sizes. 
¢  Minimize the number of actor activations. 
¢  Minimize the size of the representation  

of the schedule (code size). 

 See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software 
Synthesis from Dataflow Graphs, Kluwer Academic Press, 1996. 

 
Beyond our scope here, but hints that it’s an interesting problem… 
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Minimum Buffer Schedule 

A B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E 
A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C 
D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A 
B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F E B C A 
F F F F F B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F 
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F F F F B C A B A B C A B C D E F F F F F E F F F F F 

Source: Shuvra Bhattacharyya 



26 

Scheduling Tradeoffs 
(Bhattacharyya, Parks, Pino) 

Scheduling strategy Code Data 

Minimum buffer schedule, no looping 13735  32 

Minimum buffer schedule, with looping 9400  32 

Worst minimum code size schedule  170 1021 

Best minimum code size schedule 170 264 

Source: Shuvra Bhattacharyya 
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Dynamic Dataflow 

Imperative 
equivalent: 
 
while (true) { 
   x = f1(); 
   b = f7(); 
   if (b) { 
     y = f3(x); 
   } else { 
     y = f4(x); 
   } 
   f6(y); 
} 

The if-then-else model is not SDF. 
But we can clearly give a bounded 
quasi-static schedule for it: 
(1, 7, 2, b?3, !b?4, 5, 6) 

What consumption rate? 

What production rate? 

guard 
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Another example: H.263 video codec 

[Wiggers et al., RTAS’08] conduct buffer analysis for such 
dynamic dataflow models. 

Read VLD DQ IDCT MC DAC 
1 1 

1[n] 

2048           m 1 1 n 1 1 n 

1[n] 

Variable-Length 
Decoder  

Motion 
Compensator  
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Facts about (general) dynamic dataflow 

¢  Whether there exists a schedule that does not 
deadlock is undecidable. 

¢  Whether there exists a schedule that executes forever 
with bounded memory is undecidable. 

 Undecidable means that there is no algorithm that can 
answer the question in finite time for all finite models. 
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Structured Dataflow 

LabVIEW uses homogeneous SDF augmented with 
syntactically constrained forms of feedback and rate 
changes: 
¢   While loops 
¢   Conditionals 
¢   Sequences 
LabVIEW models are decidable. 
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Many other concurrent MoCs have been explored 

¢  (Kahn) process networks 
¢  Communicating sequential processes (rendezvous) 
¢  Time-driven models 
¢  More dataflow variants: 

l cyclostatic 
l Heterochronous 
l … 

¢  Petri nets 
¢  … 
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