
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 19: Dataflow Models 2 (Ch. 6)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Abstracted Version of the Spectrum Example

Suppose that C requires 8 data values from A to execute.
Suppose further that C takes much longer to execute
than A or B. Then a schedule might look like this:

…

1 1

8

3

Dataflow Models

Buffered communication between concurrent components (actors).

An actor can fire whenever it has enough data (tokens) in its input
buffers. It then produces some data on its output buffers.

In principle, buffers are unbounded. But for implementation on a
computer, we want them bounded (and as small as possible).

Actor A
FIFO buffer

Actor B

4

Dataflow

Firing rules:
the number of
tokens
required to fire
an actor.

5

Dataflow: many variants, still active area of research

6

Synchronous Dataflow (SDF)

If the number of tokens consumed and produced by the
firing of an actor is constant, then static analysis can tell
us whether we can schedule the firings to get a useful
execution, and if so, then a finite representation of a
schedule for such an execution can be created.

7

Balance Equations

Let qA, qB be the number of firings of actors A and B.
Let pC, cC be the number of tokens produced and
consumed on a connection C.
Then the system is in balance if for all connections C

qA pC = qB cC
where A produces tokens on C and B consumes them.

8

Example

Consider this example, where actors and arcs are
numbered:

The balance equations imply that actor 3 must fire twice
as often as the other two actors.

9

Compactly Representing the Balance Equations

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

=Γ

102
120
011

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

3

2

1

q
q
q

q
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

==Γ

0
0
0

0

q

Actor 1

Connector 1
balance equations

firing vector

production/consumption matrix

10

Question on material from the last time …

What is the production/consumption matrix in this case?

1 1

8

⎥
⎦

⎤
⎢
⎣

⎡ −

−
=Γ

0
1

8
0

1
1

11

Example

A solution to the balance equations:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

2
1
1

q
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

=Γ

102
120
011

0

=Γq

This tells us that actor 3 must fire twice as often as actors 1 and 2.

12

Example

But there are many solutions to the balance equations:

For “well-behaved” models, there is a unique least
positive integer solution.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

2
1
1

q 0

=Γq
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

0
0
0

q
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

4
2
2

q
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

=

2
1
1

q
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

π

π

π

2
q

13

Least Positive Integer Solution to the Balance
Equations

Note that if pC, cC , the number of tokens produced and
consumed on a connection C, are non-negative integers,
then the balance equation,

qA pC = qB cC
implies:
¢  qA is rational if and only if qB is rational.
¢  qA is positive if and only if qB is positive.

Consequence: Within any connected component, if there
is any non-zero solution to the balance equations, then
there is a unique least positive integer solution.

14

Rank of a Matrix

The rank of a matrix Γ is the number of linearly
independent rows or columns. The equation

is forming a linear combination of the columns of Γ. Such
a linear combination can only yield the zero vector if the
columns are linearly dependent (this is what is means to
be linearly dependent).

If Γ has a columns and b rows, the rank cannot exceed
min(a, b). If the columns or rows of Γ are re-ordered, the
resulting matrix has the same rank as Γ.

0

=Γq

15

Rank of the Production/Consumption Matrix

Let a be the number of actors in a connected graph. Then
the rank of the production/consumption matrix Γ is ≤ a.
(why?)

If the model is a spanning tree (meaning that there are
barely enough connections to make it connected) then Γ
has a rows and a - 1 columns.
Theorem [Lee-Messerschmitt’87]: Its rank is a - 1.
Exercise: Prove it. (Hint: use induction).

Corollary: the rank of any production/consumption matrix
of a connected graph is either a or a - 1. (why?)

16

Consistent Models

Let a be the number of actors in a connected model. The
model is consistent if Γ has rank a - 1.

If the rank is a, then the balance equations have only a
trivial solution (zero firings).

When Γ has rank a - 1, then the balance equations
always have a non-trivial solution.

17

Example of an Inconsistent Model:
No Non-Trivial Solution to the Balance Equations

This production/consumption matrix has rank 3, so there
are no nontrivial solutions to the balance equations.

Note that this model can execute forever, but it requires
unbounded memory.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

=Γ

102
110
011

18

Necessary and sufficient conditions

Consistency is a necessary condition to have a
(bounded-memory) infinite execution.

Is it sufficient?

19

Deadlock 1

Is this diagram consistent?

A B

1 1

1 1

20

Deadlock 2

Some dataflow models cannot execute forever. In the
above model, the feedback loop injects initial tokens, but
not enough for the model to execute.

21

SDF: from static analysis to scheduling

Given: SDF diagram
Find: a bounded-buffer schedule, if it exists

Step 0: check whether diagram is consistent. If not, then
no bounded-buffer schedule exists.

Step 1: find an integer solution to Γq=0.

Step 2: “decompose” the solution q into a schedule,
making sure buffers never become negative.

22

Step 2: “decomposing” the firing vector

Example 1:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

2
1
1

q

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

0
0
0

b
Fire 1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

2
1
0

q

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

2
0
1

b
Fire 2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

2
0
0

q

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

2
2
0

b
Fire 3

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

1
0
0

q

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

1
1
0

b
Fire 3

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

0
0
0

q

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

0
0
0

b

Schedule = (1;2;3;3)

23

Step 2: “decomposing” the firing vector

Example 2:

What happens if we try to run
the previous procedure
on this example?

A B

1 1

1 1

So, we have both necessary
and sufficient conditions for
scheduling SDF graphs.

24

A Key Question: If More Than One Actor is
Fireable in Step 2, How do I Select One?

Optimization criteria that might be applied:
¢  Minimize buffer sizes.
¢  Minimize the number of actor activations.
¢  Minimize the size of the representation

of the schedule (code size).

 See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software
Synthesis from Dataflow Graphs, Kluwer Academic Press, 1996.

Beyond our scope here, but hints that it’s an interesting problem…

25

Minimum Buffer Schedule

A B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E
A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C
D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A
B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F E B C A
F F F F F B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F
F F F F B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C
D E A F F F F F B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C A
B C D E A F F F F F B A B C A B C A B A B C D E A F F F F F E B C A F F F F F B
A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F F F F F B A
B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E A F F F
F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F
F F F F B A B C A B C A B A B C A B C D E A F F F F F E B A F F F F F B C A B C
A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A
B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B
A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F
F F F F B C A B A B C A B C D E F F F F F E F F F F F

Source: Shuvra Bhattacharyya

26

Scheduling Tradeoffs
(Bhattacharyya, Parks, Pino)

Scheduling strategy Code Data

Minimum buffer schedule, no looping 13735 32

Minimum buffer schedule, with looping 9400 32

Worst minimum code size schedule 170 1021

Best minimum code size schedule 170 264

Source: Shuvra Bhattacharyya

27

Dynamic Dataflow

Imperative
equivalent:

while (true) {
 x = f1();
 b = f7();
 if (b) {
 y = f3(x);
 } else {
 y = f4(x);
 }
 f6(y);
}

The if-then-else model is not SDF.
But we can clearly give a bounded
quasi-static schedule for it:
(1, 7, 2, b?3, !b?4, 5, 6)

What consumption rate?

What production rate?

guard

28

Another example: H.263 video codec

[Wiggers et al., RTAS’08] conduct buffer analysis for such
dynamic dataflow models.

Read VLD DQ IDCT MC DAC
1 1

1[n]

2048 m 1 1 n 1 1 n

1[n]

Variable-Length
Decoder

Motion
Compensator

29

Facts about (general) dynamic dataflow

¢  Whether there exists a schedule that does not
deadlock is undecidable.

¢  Whether there exists a schedule that executes forever
with bounded memory is undecidable.

 Undecidable means that there is no algorithm that can
answer the question in finite time for all finite models.

30

Structured Dataflow

LabVIEW uses homogeneous SDF augmented with
syntactically constrained forms of feedback and rate
changes:
¢  While loops
¢  Conditionals
¢  Sequences
LabVIEW models are decidable.

31

Many other concurrent MoCs have been explored

¢  (Kahn) process networks
¢  Communicating sequential processes (rendezvous)
¢  Time-driven models
¢  More dataflow variants:

l cyclostatic
l Heterochronous
l …

¢  Petri nets
¢  …

32

Reading

E.A. Lee and D.G. Messerschmitt. Synchronous data
flow. In Proceedings of the IEEE. 1987.

S.S. Battacharyya, P.K. Murthy, and E.A. Lee. Software

Synthesis from Dataflow Graphs. Kluwer, 1996.

M. Wiggers, M. Bekooij, and G. Smit. Buffer Capacity

Computation for Throughput Constrained Streaming
Applications with Data-Dependent Inter-Task
Communication. In RTAS’08, IEEE, 2008.

