
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 11: Operating Systems,
Microkernels, & Scheduling (Ch. 11)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Source

This lecture draws heavily from:

 Giorgio C. Buttazzo, Hard Real-Time Computing

Systems, Springer, 2004.

On reserve in the Engineering library.

3

Responsibilities of a Microkernel
(a small, custom OS)

¢  Scheduling of threads or processes
l  Creation and termination of threads
l  Timing of thread activations

¢  Synchronization
l  Semaphores and locks

¢  Input and output
l  Interrupt handling

4

A Few More Advanced Functions of an
Operating System – Not discussed here…

¢  Memory management
l  Separate stacks
l  Segmentation
l  Allocation and deallocation

¢  File system
l  Persistent storage

¢  Networking
l  TCP/IP stack

¢  Security
l  User vs. kernel space
l  Identity management

5

Outline of a Microkernel

¢  Main:
l set up periodic timer interrupts;
l create default thread data structures;
l dispatch a thread (procedure call);
l execute main thread (idle or power save, for example).

¢  Thread data structure:
l copy of all state (machine registers)
l address at which to resume executing the thread
l status of the thread (e.g. blocked on mutex)
l priority, WCET (worst case execution time), and other

info to assist the scheduler

6

Outline of a Microkernel

¢  Timer interrupt service routine:
l dispatch a thread.

¢  Dispatching a thread:
l disable interrupts;
l save state (registers) into current thread data structure;
l save return address from the stack for current thread;
l determine which thread should execute (scheduling);
l  if the same one, enable interrupts and return;
l copy thread state into machine registers;
l replace program counter on the stack for the new thread;
l enable interrupts;
l return.

7

When can a new thread be dispatched?

¢  Under non-preemptive scheduling:
l  When the current thread completes.

¢  Under Preemptive scheduling:
l  Upon a timer interrupt
l  Upon an I/O interrupt (possibly)
l  When a new thread is created, or one completes.
l  When the current thread blocks on or releases a mutex
l  When the current thread blocks on a semaphore
l  When a semaphore state is changed
l  When the current thread makes any OS call

•  file system access
•  network access
•  …

8

The Focus Today:
How to decide which thread to schedule?

Considerations:
¢  Preemptive vs. non-preemptive scheduling
¢  Periodic vs. aperiodic tasks
¢  Fixed priority vs. dynamic priority
¢  Priority inversion anomalies
¢  Other scheduling anomalies

9

Preemptive Scheduling

Assume all threads have priorities
¢  either statically assigned (constant for the duration of the thread)
¢  or dynamically assigned (can vary).

Assume further that the kernel keeps track of which threads are
“enabled” (able to execute, e.g. not blocked waiting for a
semaphore or a mutex or for a time to expire).

Preemptive scheduling:

l  At any instant, the enabled thread with the highest priority is
executing.

l  Whenever any thread changes priority or enabled status, the kernel
can dispatch a new thread.

10

Rate Monotonic Scheduling

Assume n tasks invoked periodically with:
l  periods T1, … ,Tn (impose real-time constraints)
l  worst-case execution times (WCET) C1, … ,Cn

•  assumes no mutexes, semaphores, or blocking I/O
l  no precedence constraints
l  fixed priorities
l  preemptive scheduling

Theorem: If any priority assignment yields a feasible schedule, then
priorities ordered by period (smallest period has the highest priority)
also yields a feasible schedule.
RMS is optimal in the sense of feasibility.

Liu and Leland, “Scheduling algorithms for multiprogramming in a
hard-real-time environment,” J. ACM, 20(1), 1973.

11

Feasibility for RMS

Feasibility is defined for RMS to mean that every task
executes to completion once within its designated period.

12

Showing Optimality of RMS:
Consider two tasks with different periods

Is a non-preemptive schedule feasible?

C1

T1

C2

T2

13

Showing Optimality of RMS:
Consider two tasks with different periods

Non-preemptive schedule is not feasible. Some instance
of the Red Task (2) will not finish within its period if we do
non-preemptive scheduling.

C1

T1

C2

T2

14

Showing Optimality of RMS:
Consider two tasks with different periods

What if we had a preemptive scheduling with higher
priority for red task?

C1

T1

C2

T2

15

Showing Optimality of RMS:
Consider two tasks with different periods

Preemptive schedule with the red task having higher
priority is feasible. Note that preemption of the blue task
extends its completion time.

preempted
C1 C1

16

Showing Optimality of RMS:
Alignment of tasks

Completion time of the lower
priority task is worst when its
starting phase matches that
of higher priority tasks.

Thus, when checking
schedule feasibility, it is
sufficient to consider only the
worst case: All tasks start
their cycles at the same time.

T1
C1

17

Showing Optimality of RMS:
(for two tasks)

It is sufficient to show that if a non-RMS schedule is
feasible, then the RMS schedule is feasible.
Consider two tasks as follows:

C1

T1

C2

T2

18

Showing Optimality of RMS:
(for two tasks)

The non-RMS, fixed priority schedule looks like this:

T2

C2 C1

From this, we can see that the non-RMS
schedule is feasible if and only if

We can then show that this condition implies that
the RMS schedule is feasible.

221 TCC ≤+

19

Showing Optimality of RMS:
(for two tasks)

The RMS schedule looks like this: (task with smaller period
moves earlier)

T2

C2
C1

The condition for the non-RMS schedule
feasibility:

is clearly sufficient (though not necessary) for
feasibility of the RMS schedule. QED.

221 TCC ≤+

20

Comments

¢  This proof can be extended to an arbitrary number of
tasks (though it gets much more tedious).

¢  This proof gives optimality only w.r.t. feasibility. It says
nothing about other optimality criteria.

¢  Practical implementation:
l Timer interrupt at greatest common divisor of the periods.
l Multiple timers

21

Deadline Driven Scheduling:
1. Jackson’s Algorithm: EDD (1955)

Given n independent one-time tasks with deadlines
d1 , … , dn, schedule them to minimize the maximum lateness,
defined as

where fi is the finishing time of task i. Note that this is negative
iff all deadlines are met.

Earliest Due Date (EDD) algorithm: Execute them in order of
non-decreasing deadlines.

Note that this does not require preemption.

{ }iini
dfL −=

≤≤1max max

22

Theorem: EDD is Optimal in the Sense of
Minimizing Maximum Lateness

To prove, use an interchange argument. Given a
schedule S that is not EDD, there must be tasks a and b
where a immediately precedes b in the schedule but
da > db. Why?

We can prove that this schedule can be improved by
interchanging a and b. Thus, no non-EDD schedule is
achieves smaller max lateness than EDD, so the EDD
schedule must be optimal.

23

Consider a non-EDD Schedule S
There must be tasks a and b where a immediately
precedes b in the schedule but da > db

a b

fa fb

time

{ } bbbbaa dfdfdfL −=−−= ,maxmax

a b

ba ff =ʹ′bf ʹ′

{ }bbaa dfdfL −ʹ′−ʹ′=ʹ′ ,maxmax

24

Deadline Driven Scheduling:
1. Horn’s algorithm: EDF (1974)

Extend EDD by allowing tasks to “arrive” (become ready)
at any time.

Earliest deadline first (EDF): Given a set of n
independent tasks with arbitrary arrival times, any
algorithm that at any instant executes the task with the
earliest absolute deadline among all arrived tasks is
optimal w.r.t. minimizing the maximum lateness.

Proof uses a similar interchange argument.

25

Using EDF for Periodic Tasks

¢  The EDF algorithm can be applied to periodic tasks as
well as aperiodic tasks.
l Simplest use: Deadline is the end of the period.
l Alternative use: Separately specify deadline (relative to

the period start time) and period.

26

RMS vs. EDF? Which one is better?

What are the pros and cons of each?

27

Comparison of EDF and RMS

¢  Favoring RMS
l  Scheduling decisions are simpler (fixed priorities vs. the dynamic

priorities required by EDF. EDF scheduler must maintain a list of
ready tasks that is sorted by priority.)

¢  Favoring EDF
l  Since EDF is optimal w.r.t. maximum lateness, it is also optimal

w.r.t. feasibility. RMS is only optimal w.r.t. feasibility. For infeasible
schedules, RMS completely blocks lower priority tasks, resulting in
unbounded maximum lateness.

l  EDF can achieve full utilization where RMS fails to do that
l  EDF results in fewer preemptions in practice, and hence less

overhead for context switching.
l  Deadlines can be different from the period.

28

Precedence Constraints

A directed acyclic graph (DAG) shows precedences,
which indicate which tasks must complete before other
tasks start.

1
2

3

4

5

6

DAG, showing that task 1 must complete
before tasks 2 and 3 can be started, etc.

29

Example: EDF Schedule

Is this feasible? Is it optimal?

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

30

EDF is not optimal under precedence constraints

The EDF schedule chooses task 3 at time 1 because it
has an earlier deadline. This choice results in task 4
missing its deadline.

Is there a feasible schedule?

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

31

LDF is optimal under precedence constraints

The LDF schedule shown at the bottom respects all
precedences and meets all deadlines.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

32

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

33

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

34

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

35

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

36

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

37

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

38

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

39

Latest Deadline First (LDF)
(Lawler, 1973)

LDF is optimal in the sense that it minimizes the
maximum lateness.

It does not require preemption. (We’ll see that EDF does.)

However, it requires that all tasks be available and their
precedences known before any task is executed.

40

EDF with Precedences

With a preemptive scheduler, EDF can be modified to
account for precedences and to allow tasks to arrive at
arbitrary times. Simply adjust the deadlines and arrival
times according to the precedences.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Recall that for the tasks at the left, EDF
yields the schedule above, where task 4
misses its deadline.

41

EDF with Precedences
Modifying release times

Given n tasks with precedences and release times ri, if
task i immediately precedes task j, then modify the
release times as follows:

1
2

3

4

5

6
C1 = 1
d1 = 2
r'1 = 0

C3 = 1
d3 = 4
r‘3 = 1

C2 = 1
d2 = 5
r‘2 = 1

C4 = 1
d4 = 3
r‘4 = 2

C5 = 1
d5 = 5
r‘5 = 2

C6 = 1
d6 = 6
r‘6 = 2

),max(iijj Crrr +=ʹ′

ri = 0
assume:

42

EDF with Precedences
Modifying deadlines

Given n tasks with precedences and deadlines di, if task i
immediately precedes task j, then modify the deadlines
as follows:

1
2

3

4

5

6
C1 = 1
d1 = 2
r'1 = 0
d‘2 = 1

C3 = 1
d3 = 4
r‘3 = 1
d‘3 = 4

C2 = 1
d2 = 5
r‘2 = 1
d‘2 = 2

C4 = 1
d4 = 3
r‘4 = 2
d'4 = 3

C5 = 1
d5 = 5
r‘5 = 2
d‘5 = 5

C6 = 1
d6 = 6
r‘6 = 2
d‘6 = 6

Using the revised release times and
deadlines, the above EDF schedule is
optimal and meets all deadlines.

),min(jjii Cddd −ʹ′=ʹ′

ri = 0
assume:

43

Optimality

EDF with precedences is optimal in the sense of
minimizing the maximum lateness.

