
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 12: Scheduling Anomalies (Ch. 11)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Source

This lecture draws heavily from:

 Giorgio C. Buttazzo, Hard Real-Time Computing

Systems, Springer, 2004.

On reserve in the Engineering library.

3

Recall from Last Lecture

¢  Rate-Monotonic Scheduling
¢  Earliest Deadline First
¢  EDF with Precedences

4

Today

¢  Mutual exclusion
l Priority inversion
l Priority inheritance
l Priority ceiling

¢  Multiprocessor scheduling
l Richard’s anomalies

5

Accounting for Mutual Exclusion

Recall from a previous lecture:

When threads access shared resources, they need to
use mutexes to ensure data integrity.

Mutexes can also complicate scheduling.

6

Recall mutual exclusion
mechanism in pthreads

#include <pthread.h>
...
pthread_mutex_t lock;

void* addListener(notify listener) {
 pthread_mutex_lock(&lock);
 ...
 pthread_mutex_unlock(&lock);
}

void* update(int newValue) {
 pthread_mutex_lock(&lock);
 value = newValue;
 elementType* element = head;
 while (element != 0) {
 (*(element->listener))(newValue);
 element = element->next;
 }
 pthread_mutex_unlock(&lock);
}

int main(void) {
 pthread_mutex_init(&lock, NULL);
 ...
}

Whenever a data
structure is shared across
threads, access to the
data structure must
usually be atomic. This is
enforced using mutexes,
or mutual exclusion locks.
The code executed while
holding a lock is called a
critical section.

7

Priority Inversion: A Hazard with Mutexes

Task 1 has highest priority, task 3 lowest. Task 3 acquires a lock on
a shared object, entering a critical section. It gets preempted by
task 1, which then tries to acquire the lock and blocks. Task 2
preempts task 3 at time 4, keeping the higher priority task 1 blocked
for an unbounded amount of time. In effect, the priorities of tasks 1
and 2 get inverted, since task 2 can keep task 1 waiting arbitrarily
long.

8

Mars Rover Pathfinder

The Mars Rover Pathfinder landed
on Mars on July 4th, 1997. A few days
into the mission, the Pathfinder began
sporadically missing deadlines, causing
total system resets, each with loss of
data. The problem was diagnosed on
the ground as priority inversion, where
a low priority meteorological task was
holding a lock blocking a high-priority
task while medium priority tasks
executed.

Source: RISKS-19.49 on the
comp.programming.threads
newsgroup, December 07, 1997, by
Mike Jones (mbj@MICROSOFT.com).

9

Priority Inheritance Protocol (PIP)
(Sha, Rajkumar, Lehoczky, 1990)

Task 1 has highest priority, task 3 lowest. Task 3
acquires a lock on a shared object, entering a critical
section. It gets preempted by task 1, which then tries to
acquire the lock and blocks. Task 3 inherits the priority of
task 1, preventing preemption by task 2.

10

Deadlock
#include <pthread.h>
...
pthread_mutex_t lock_a, lock_b;

void* thread_1_function(void* arg) {
 pthread_mutex_lock(&lock_b);
 ...
 pthread_mutex_lock(&lock_a);
 ...
 pthread_mutex_unlock(&lock_a);
 ...
 pthread_mutex_unlock(&lock_b);
 ...
}
void* thread_2_function(void* arg) {
 pthread_mutex_lock(&lock_a);
 ...
 pthread_mutex_lock(&lock_b);
 ...
 pthread_mutex_unlock(&lock_b);
 ...
 pthread_mutex_unlock(&lock_a);
 ...
}

The lower priority task starts
first and acquires lock a, then
gets preempted by the higher
priority task, which acquires lock
b and then blocks trying to
acquire lock a. The lower
priority task then blocks trying to
acquire lock b, and no further
progress is possible.

11

Priority Ceiling Protocol (PCP)
(Sha, Rajkumar, Lehoczky, 1990)

¢  Every lock or semaphore is assigned a priority ceiling equal to
the priority of the highest-priority task that can lock it.
l  Can one automatically compute the priority ceiling?

¢  A task T can acquire a lock only if the task’s priority is strictly
higher than the priority ceilings of all locks currently held by other
tasks
l  Intuition: the task T will not later try to acquire these locks held by

other tasks
l  Locks that are not held by any task don’t affect the task

¢  This prevents deadlocks
¢  There are extensions supporting dynamic priorities and dynamic

creations of locks (stack resource policy)

12

Priority Ceiling Protocol

In this version, locks a and b
have priority ceilings equal to the
priority of task 1. At time 3, task
1 attempts to lock b, but it can’t
because task 2 currently holds
lock a, which has priority ceiling
equal to the priority of task 1.

#include <pthread.h>
...
pthread_mutex_t lock_a, lock_b;

void* thread_1_function(void* arg) {
 pthread_mutex_lock(&lock_b);
 ...
 pthread_mutex_lock(&lock_a);
 ...
 pthread_mutex_unlock(&lock_a);
 ...
 pthread_mutex_unlock(&lock_b);
 ...
}
void* thread_2_function(void* arg) {
 pthread_mutex_lock(&lock_a);
 ...
 pthread_mutex_lock(&lock_b);
 ...
 pthread_mutex_unlock(&lock_b);
 ...
 pthread_mutex_unlock(&lock_a);
 ...
}

13

Brittleness

In general, all thread scheduling algorithms are brittle:
Small changes can have big, unexpected consequences.

I will illustrate this with multiprocessor (or multicore)
schedules.

 Theorem (Richard Graham, 1976): If a task set with fixed
priorities, execution times, and precedence constraints is
scheduled according to priorities on a fixed number of
processors, then increasing the number of processors,
reducing execution times, or weakening precedence
constraints can increase the schedule length.

14

Richard’s Anomalies

What happens if you increase the number of processors
to four?

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Priority-based 3 processor schedule:

7

6

5

C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4

15

Richard’s Anomalies:
Increasing the number of processors

The priority-based
schedule with four
processors has a
longer execution
time.

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Priority-based 3 processor schedule:

7

6

5

C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4

16

Greedy Scheduling

Priority-based
scheduling is
“greedy.” A smarter
scheduler for this
example could hold
off scheduling 5, 6, or
7, leaving a processor
idle for one time unit.

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Priority-based 3 processor schedule:

7

6

5

C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4

17

Greedy scheduling may be the only practical
option.

If tasks
“arrive” (become known
to the scheduler) only
after their predecessor
completes, then greedy
scheduling may be the
only practical option.

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Priority-based 3 processor schedule:

7

6

5

C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4

18

Richard’s Anomalies

What happens if you reduce all computation times by 1?

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Priority-based 3 processor schedule:

7

6

5

C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4

19

Richard’s Anomalies:
Reducing computation times

Reducing the
computation times
by 1 also results in
a longer execution
time.

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Priority-based 3 processor schedule:

7

6

5

C1 = 2

C2 = 1

C3 = 1

C4 = 1

C9 = 8

C8 = 3

C7 = 3

C6 = 3

C5 = 3

20

Richard’s Anomalies

What happens if you remove the precedence constraints
(4,8) and (4,7)?

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Priority-based 3 processor schedule:

7

6

5

C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4

21

Richard’s Anomalies:
Weakening the precedence constraints

Weakening
precedence
constraints can also
result in a longer
schedule.

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Priority-based 3 processor schedule:

7

6

5

C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4

22

Richard’s Anomalies with Mutexes:
Reducing Execution Time

Assume tasks 2 and 4 share the same resource in exclusive mode,
and tasks are statically allocated to processors. Then if the
execution time of task 1 is reduced, the schedule length increases:

23

Conclusion

Timing behavior under all known task scheduling
strategies is brittle. Small changes can have big (and
unexpected) consequences.

Unfortunately, since execution times are so hard to
predict, such brittleness can result in unexpected system
failures.

