
1

National Tsing Hua University, Hsinchu, Taiwan

CS 5263: Wireless Multimedia Networking 
Technologies and Applications

Digital Image Representation and Compression

Instructor: Cheng-Hsin Hsu

Some figures in these slides are taken from the online 
version of the Burg’s book: The Science of Digital Media



2

§ Analog: continuous phenomenon, between any 
two points there exist infinite number of points   
- Most natural phenomena

§ Discrete: points (either in time or space) are 
clearly separated

§ Computers work with discrete values è analog-
to-digital conversion

§ Digital media:
- Better quality, less susceptible to noise
- More compact to store and transmit (high compression 

ratios)

Analog & Discrete Phenomena 



3

§ Sampling: 
- choose discrete points at which we measure 

(sample) the continuous signal
- Sampling rate is important to recreate the 

original signal
§ Quantization:

- Represent each sample using a fixed number of bits
- Bit depth (or sample size) specifies the precision to 

represent a value 

Analog-to-Digital Conversion: Two Steps



4

§ Nyquist frequency
- The minimum sampling rate to reconstruct the original 

signal: r = 2 f
- f is the frequency of the signal

§ Under sampling can produce distorted/different 
signals (aliasing)

Sampling



5

§ f = 637 Hz

§ Sampling at 
770 (< 2 f) 
produces a 
different wave

Under sampling: Example 



6

§ n bits to represent a digital sample è max 
number of different levels is  m = 2n

§ è real, continuous, sample values are rounded 
(approximated) to the nearest levels

§ è Some information (precision) could be lost 

Quantization



7

Quantization: Example



8

§ Signal-to-Quantization-Noise Ratio (SQNR) 
- Measures amount of error introduced by quantization
- ~ max sample value / max quantization error
- Measured in decibel (dB) 

§ Max quantization error is ½  of quantization step
§ Quantization values range from -2n-1 to  2n-1 -1 
§ è Max (absolute) quantization value is 2n-1 è

Quantization: Error

1

10 10
2log log 2
1

20 20
/ 2
( ) ( )

n
nSQNR

−

= =



9

§ Bitmap images (our focus)
- Created pixel by pixel  (pixel = picture element) 
- Commonly used in digital cameras, scanners, …
- Good for photographic images, where colors change frequently 

and subtly

§ Vector graphics
- Objects are specified by math equations and colors
- Useful for clearly delineated shapes and colors, e.g., in cartoon or 

poster pictures
- Used in Adobe Illustrator, Corel Draw, Visio, Omnigraffle, and 

Xfig

§ Procedural modeling
- Computer algorithms employed to generate complex patterns, 

shapes, and colors

Methods of Creating Digital Images



10

§ Consider natural scene, shot by digital camera 
§ Sampling: #pixels in x, y

- Camera takes x y samples
- E.g., 1600 x 1200, limited by camera specs
- Pixel: small square, its value = average color in 

square
- Under sampling è lack of details : 15 x 20

§ Quantization:
- Each pixel has 3 colors R, G, B
- Bit depth: #bits for each of R, G, B
- Typical: 8 bits each è 224 ~ 16+ m colors
- low bit depth è patches of colors: 12 colors

Bitmap Images: Sampling & Quantization



11

§ Consider one row in a 
grayscale image
- Pixel values vary

§ Plot pixel value as 
function of position: 
- z = f(x,y)

§ Grayscale
- 0: black,  255: white

§ Same waveform analysis  
applies to R, G, B color 
components

Representing Images as Waveforms



12

§ Complex images è complex 
waveforms

§ Sudden changes in pixel 
values (color)è high 
frequency components in 
the waveform (signal)

§ How do we analyze such 
complex signals?

§ Using Fourier Theory

Representing Images as Waveforms



13

§ Fourier showed that any periodic signal can be 
decomposed into an infinite sum of sinusoidal waveforms

§ Sinusoidal waves  = frequency components
§ Coefficients  = weights of different components
§ This analysis allows us to 

- determine the signal’s frequency components
- store complex signals in digital form
- filter out unwanted/unimportant components

• i.e., components that cannot be seen or heard by humans

Fourier Analysis

0
cos ( )( ) n

n
a nw xf x

∞

=

=∑



14

§ Signal that has only three 
components
- All other coefficients are 0

Fourier Analysis: Sound Wave



15

§ Images have discrete points è Discrete Cosine 
Transform (DCT)

§ Consider one row of M pixels in an image 
- Can be represented as sum of M weighted cosine 

functions (called basis functions):

Frequency Components of Images

( )1

0
( ) for 0

2where ( ) if 0 otherwise (

2 12 ( )
( ) cos

) 1
2

2

M

u
f r r M

C u u C u

r uC u
F u

MM
π−

=

= ≤
⎛ ⎞+
⎜ ⎟

⎠
<

=

⎝

= =

∑



16

§ 8 pixels with values:
[0, 0, 0, 153, 255, 255, 220, 220]

§ We compute weight for each of 
the eight basis functions

Simple Example



17

§ Basis function 0 
Direct Current (DC) 
component  
no change in color

§ Basis function 1 
low frequency
slow change in color

§ Basis function 2
bit faster change in color

Example (cont’d)



18

Example (cont’d)

§ Basis function 3 

§ Basis function 4 

§ Basis function 5



19

Example (cont’d)

§ Basis function 6 

§ Basis function 7
Highest frequency 
component
Notice the rapid change 
in pixel value (color)



20

§ When all components are 
added up with their weights, 
we get the original row of 
pixels

Example (cont’d)



21

§ We can compute the coefficients (weights) for an 
M x N image from: 

Two Dimensional DCT

( ) ( )1

0

1

0
( , )

for 0 , 0

2where ( ) if 0 otherwise ( )

2 1 2 12 ( ) ( ) ( , ) cos cos
2 2

1
2

M

u

N

v

r u s
F r s

r M

vC u C v f u v
M NMN

s N

C C

π π

δ δ δ

−

=

−

=

⎛ ⎞ ⎛ ⎞+ +
⎜ ⎟ ⎜ ⎟
⎝ ⎠

=

≤ < ≤ <

=

⎝ ⎠

= =

∑∑

§ This is called 2D discrete cosine transform
§ The inverse also exists: swap f(.,.) with F(.,.)



22

§ DCT takes bitmap image (matrix of colors) and returns 
frequency components  (matrix of DCT coefficients)

§ In other words, DCT transforms signal from spatial
domain to frequency domain

§ DCT usually applied on blocks of 8 x 8 pixels
- For efficient computation of coefficients

DCT: Notes



23

§ DCT basis functions for 8 x 8 images
§ Squares represent

as r, s vary from 0 to 7
§ Frequency increases as we move 

right & down
- ½ cycle for each square

§ Any 8 x 8 image can be 
represented by choosing 
appropriate weights for 
these basis functions

DCT: Notes
DC

( ) ( )2 1 2 1
cos cos

2 2
r u s v
M N

π π⎛ ⎞ ⎛ ⎞+ +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

High frequency



24

§ Compute DCT for the 8 x 8 image:
§ What do you expect?
§ Not too much color changes è DC & 

few low frequency components 

§ Does DCT help in image 
compression?  How?

§ Many coefficients are 0 è
easy to represent them in 
compact form

DCT & Compression



Summary of Image Representation

§ Analog (natural) signals are converted to digital by 
- Sampling  (by at least double the signal frequency– Nyquist)
- Quantization (some loss of info, depending on the quantization 

step (number of bits used) à SQNR)

§ Images can be represented as waveforms (value vs space)

§ Waveforms can be decomposed into essential frequency 
components using Fourier analysis 

§ 2-D DCT is used to analyze images (discrete signals)
- Allows us to understand frequency components of an image
- Helps in compression

25



26

§ Audio, image, and video require huge storage and 
network bandwidth if not compressed

§ Example:
- 10-min video clip (with no audio)
- 30 frames per sec
- Frame resolution = 720 pixels x 480 pixels
- Bits per pixel = 8 x 3 = 24 
- Video file size ~= 17.4 GB
- Bandwidth required for streaming > 240 Mb/s  

Compression Methods



27

§ Lossless Compression: no information is lost
- Run-Length Encoding (RLE)
- Entropy Encoding

• Shannon-Fano, Huffman

- Arithmetic Encoding 

§ Lossy Compression: some (unimportant) 
information is lost
- E.g., frequencies not heard in audio, subtle details not 

noticed in image è high compression ratios

Types of Compression



28

§ Idea: consider the following pixel values
- 255, 255, 255, 255, 240, 240, 240, 150, 150, 150

§ RLE  (value, repetition):  (255,4), (240, 3), (150, 3)
§ Size of compressed string?

- Value: needs 8 bits (ranges from 0 to 255)
- Repetition: depends on the longest run in the image 
- Assume repetition takes 8 bits for the above example è
- Compression ratio = (10 x 1 byte ) / (3 x 2 bytes) = 1.67

§ RLE used in image/video compression
- Usually there are rows of pixels with same color
- Or rows of zero AC coefficients

§ RLE may increase size in some situations!
- 255, 255, 240, 210è (255, 2), (240,1), (210,1) è ratio = 4/6=0.67

Run-Length Encoding



29

§ Entropy of information source S generating symbols is:

- pi : probability of symbol i appearing 

§ Entropy measures the degree of randomness (uncertainty) 
of symbols generated by the source
- S always generates same specific symbol è H(S) = 0
- H(S) increases as uncertainty increases, max when all symbols are 

equally likely to appear

§ Shannon showed that: 
- The minimum average number of bits needed to represent a string 

of symbols equals to its entropy

Entropy Encoding

2
1( ) log

i
i

ip
H S p

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑



30

§ Ex1: image with 256 pixels, each with different colorè
- pi = 1/256  for i = 0,1,2, …, 255 è Entropy = 8
- That is, average #bits to encode each color is 8 (cannot do better)

§ Ex2: image with 256 pixels, with the following
- Entropy = 2.006 è min avg

#bits to represent a color
- We can achieve this by assigning 

different #bits (codes) to different 
colors (variable length encoding)

§ Huffman and Shannon-Fano
algorithms approximate this 

Entropy Encoding: Examples

Color Freq pi Min 
#bits

black 100 0.391 1.356
white 100 0.391 1.356
yellow 20 0.078 3.678
orange 5 0.020 5.678
red 5 0.020 5.678
purple 3 0.012 6.415
blue 20 0.078 3.678



31

§ Variable Length Encoding: 
§ Fewer number of bits for more frequent colors

§ Prefix-free code:
§ No ambiguity during decoding à space saving (otherwise, we 

need either length field or terminating sequence)

§ Two passes:
I. Determine the codes for the colors  

1. Compute frequencies
2. Build Huffman tree (bottom up)
3. Assign codes (top down)

II. Replace each color by its code

Huffman Algorithm



32

§ Image with five colors 

§ Huffman tree 

Huffman Algorithm: Example



33

§ Assigning codes top 
down

§ Decoding
- Need frequencies (or the tree)

- Bits from the compressed 
file are matched (left=0 & 
right=1) from root down

§ Note: each color needs 
integer number of bits, 
although the optimal 
(according to Shannon) 
may be fractional è

§ Arithmetic Encoding

Huffman Algorithm: Example (cont’d)



34

§ Avoids the disadvantage of Huffman encoding
- Comes closer to the optimal
- Still uses statistical analysis (entropy coding)

§ It encodes a whole string of symbols in one 
floating point number
- Each symbol is assigned a probability interval with size 

proportional to its frequency of occurrence

§ The code (floating point number) of a sequence of 
symbols is created by successively narrowing the 
range between 0 and 1 for each symbol 

Arithmetic Encoding



35

§ 100 pixels with frequencies è
§ Consider encoding 6 pixels: 

W K K Y R B
- W: interval 0.4 – 0.65
- K: interval 0 – 0.4 of the 

W’s interval  
- And so on …

Arithmetic Encoding: Example

Color Frequency
Probability 

Interval
black (K) 40/100 = 0.4 0–0.4
white (W) 25/100 = 0.25 0.4–0.65
yellow (Y) 15/100 = 0.15 0.65–0.8
red (R) 10/100 = 0.1 0.8–0.9
blue (B) 10/100 = 0.1 0.9–1.0



36

§ Encoding of 
W K K Y R B

Arithmetic Encoding: Example



37

§ Decoding: 
- Assume final number (code) is 0.43137
- Falls in W’s interval è first symbol is W
- Subtract low value of W’s interval and scale by its width è

(0.43137 – 0.4)/0.25 = 0.12548 

- which is in K’s interval è second symbol is K
- … and so on

Arithmetic Encoding: Example



38

§ Form of entropy encoding
§ But gives closer to optimal results (more 

compression) than Huffman encoding
§ Can be done using only integer operations
§ IBM and other companies hold patents on 

algorithms for arithmetic encoding
§ Used in recent video coding standards 

(H.264/AVC) 

Arithmetic Encoding: Notes



39

§ Divide image into 8 × 8 pixel blocks 
§ Convert image to luminance/chrominance model, e.g.,  YCbCr

- Optional; could apply same algorithm on each of the R, G, B components

§ Apply 2d DCT 
- Shift pixel values by -128  (makes image more centered around 0)

§ Quantize DCT coefficients 
§ Store DC value (upper left corner) as the difference between current 

DC value and DC from previous block 
§ Do run-length encoding 

- in zigzag order

§ Do entropy encoding, e.g., Huffman
§ Store file in standard format (header contains info for decoder, e.g., 

quantization tables, Huffman codes, …)

JPEG Compression



Chroma Subsampling

§ Eye is more sensitive to changes in light (luminance) than 
in color (chrominance) è subsample CbCr

§ Subsampling notation:  a:b:c
- From 4 x 4 block: take a samples from Y; b samples from each of  

Cb & Cr from top row; and c samples from each of Cb & Cr 
from bottom row

- Common examples: 4:1:1;  4:2:0;  4:2:2 
- Ex: 4:2:0 yields a saving of  (16 * 3) / (16 + 4 * 2) = 2 

40



Subsampling and Macroblocks

§ With subsampling (i.e., if YCbCr is used), we create 8 x 
8 blocks as follows:

- Divide the image into 16 x 16 macroblocks
- è four 8 x 8 blocks for Y (no subsampling for Y)
- #of blocks for CbCr depends on the subsampling
- E.g., 4:2:0 & 4:1:1 è one block for Cb & one for Cr

41

Y Y

YY

Cb

Cr
16 x 16 16 x 16 16 x 16 



Quantize DCT Coefficients 
§ Uniform Quantizer: Divide each coefficient by integer

and round
- The only lossy operation in the whole compression algorithm

• Larger integers è Larger compression AND larger distortion/error

- High frequency coefficients are usually small è become zeros 
è more compression

- Quantization Table
• Each coefficient could have a different quantizer
• Larger quantizers for high frequency coefficients 

42

uint_8 luminance_quant_tbl[DCTSIZE2]={
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55, 
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 55, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99

};

u_int8 chrominance_quant_tbl[DCTSIZE2]={
17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99

};



Run-length Encoding

§ Done in zigzag order
- sorts values from low-

frequency to high 
frequency components è

- longer strings of 0’s 
(because high frequency 
components are usually 0)

43



Summary on Image Compression

§ Lossless compression: RLE, Entropy, Arithmetic 

§ Lossy compression: ignores less important info to 
achieve higher compression ratios

§ Chroma subsampling: take fewer samplers from colors
- de-emphasize color components because eyes are more 

sensitive to luminance
- E.g., 4:2:2 à 4 samples Y,  2 samples CbCr each from even 

row, 2 samples  CbCr from odd rows   

§ JPEG compress
- Blocks à convert to YCbCr à DCT à Quantize à zigzag 

RLE à Entropy coding

44


