
Lifecycle of	Activity



Overview	of	Activity	Lifecycle



Activity	Lifecycle
• Active/running:	activity	in	the	foreground	
• Pause:	An	activity	has	lost	focus	but	is	still	visible	
• Stopped:	It’s	no	longer	visible	but	still	retains	
all	state	and	member	
information	
• Finish	/	kill	

Activity	Stack

Previous	Activities

Last	Active	Activity

…
...

Active	ActivityNew	Activity

Remove	to	
free	resources



Why	Lifecycle	Important

• Implementing	your	activity	lifecycle	methods	
properly	ensures	your	app	behaves
• Does	not	crash	if	the	user	switches	to	another	app	while	
using	your	app
• Does	not	lose	the	user's	progress	if	they	leave	your	app	
and	return	to	it	at	a	later	time
• Does	not	crash	or	lose	the	user's	progress	when	the	
screen	rotates
• Does	not	waste	resources	if	your	app	is	destroyed,	but	
some	other	apps	launched	by	your	app	are	still	running



Starts	From	the	App	Icon

• When	the	user	selects	your	app	icon	
from	the	Home	screen,	the	system	
calls	the	onCreate() method	for	the	
Activity	that	you've	declared	to	be	the	
"launcher"	("main")	activity
• This	is	the	activity	that	serves	as	the	
main	entry	point	to	your	app's	user	
interface

Select	App	Icon



•Declare	the	main	activity	in	Android	
manifest	file,	AndroidManifest.xml

<activity android:name=".MainActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>



Go	Through	the	Activity	Lifecycle

• Create	a	new	activity	– onCreate()
• Destroy	the	activity	– onDestroy()
• Pause	the	activity	– onPause()
• Resume	the	activity	– onResume()
• Stop	the	activity	– onStop()
• Recreate	the	activity
• Saving	states



Create	a	New	Activity

• Most	apps	include	several	different	activities	that	
allow	the	user	to	perform	different	actions
• You	must	implement	the	onCreate()	method	to	
perform	basic	application	startup	logic	that	should	
happen	only	once	for	the	entire	life	of	the	activity	
• For	example,	your	implementation	of	onCreate()	
should	define	the	user	interface	and	possibly	
instantiate	some	class-scope	variables



An	Example	of	onCreate()	Method

TextViewmTextView; //	Member	variable	for	text	view	in	the	layout

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

//	Set	the	user	interface	layout	for	this	Activity

//	The	layout	file	is	defined	in	the	project	res/layout/main_activity.xml	file

setContentView(R.layout.main_activity);



//	Initialize	member	TextView	so	we	can	manipulate	it	later

mTextView	= (TextView) findViewById(R.id.text_message);

//	Make	sure	we're	running	on	Honeycomb	or	higher	to	use	ActionBar	APIs

if (Build.VERSION.SDK_INT	>= Build.VERSION_CODES.HONEYCOMB) {

//	For	the	main	activity,	make	sure	the	app	icon	in	the	action	bar

//	does	not	behave	as	a	button

ActionBar actionBar	= getActionBar();

actionBar.setHomeButtonEnabled(false);

}

}



The	Flow	From	onCreate()
• Once	the	onCreate()	is	done,	the	system	calls	the	
onStart()	and	onResume()	methods	in	quick	
succession

• The	user	interacts	with	the	activity	at	Resumed state



Destroy	The	Activity
• Most	apps	don't	need	to	implement	onDestroy()
because	local	class	references	are	destroyed	with	the	
activity
• However,	if	your	activity	includes	

• background	threads	that	you	created	during	onCreate()	
• other	long-running	resources	that	could	potentially	leak	
memory

→	you	should	kill	them	during	onDestroy()



An	Example	of	onDestroy()	Method

@Override
public	void	onDestroy()	{
super.onDestroy();	 //	Always	call	the	superclass

//	Stop	method	tracing	that	the	activity	started	during	onCreate()
android.os.Debug.stopMethodTracing();

}



Pause	The	Activity
• The	foreground	activity	is	sometimes	obstructed	by	
other	components	that	cause	the	activity	to	pause
• e.g.,	when	a	semi-transparent	activity	opens,	such	as	a	
dialog,	the	previous	activity	pauses



The	onPause()	Callback	Method
• When	onPause()	is	called,	it	technically	means	your	
activity	is	still	partially	visible,	but	often	users	are	
going	to	leave	the	activity
• You	should	use	the	onPause()	callback	to:

• Stop	animations	or	other	ongoing	actions	that	could	
consume	CPU
• Release	system	resources,	such	as	broadcast	receivers,	
handles	to	sensors	(like	GPS)



Resume The	Activity
• The	system	calls	onResume()	every	time	the	activity	
comes	into	the	foreground
• you	should	implement onResume() to	initialize	
components	that	you	release	during onPause()	and	
perform	any	other	initializations that	must	occur	each	
time	the	activity	enters	the	Resumed	state



Stop The	activity
• When	the	activity	stops?	The	user

• opens	The	Recent	Apps	window	and	switches	from	your	
app	to	another	app
• performs	an	action	in	your	app	that	starts	a	new	activity
• Receives	a	phone	call	while	using	your	app	on	his/her	
phone

• it's	no	longer	visible	and	should	release	almost	all	
resources	that	aren't	needed	while	the	user	is	not	
using	it



An	Example	of	onStop()

@Override

protected void onStop() {

super.onStop(); //	Always	call	the	superclass	method	 first

//	Save	the	note's	current	draft,	because	the	activity	is	stopping

//	and	we	want	to	be	sure	the	current	note	progress	 isn't	lost.

ContentValues values	= new ContentValues();

values.put(NotePad.Notes.COLUMN_NAME_NOTE, getCurrentNoteText());

values.put(NotePad.Notes.COLUMN_NAME_TITLE, getCurrentNoteTitle());

getContentResolver().update(	mUri, values,	null,	null);

}

saves	the	contents	of	a	draft	note	to	persistent	storage



Recreating	The	Activity
• To	save	additional	state	information	for	your	activity,	
you	must	implement	onSaveInstanceState()	and	add	
key-value	pairs	to	the	Bundle	object
• This	bundle	object	will	help	to	restore	the	activity	
later



An	Example	of	Saving	Your	State

static final String STATE_SCORE	= "playerScore";

static final String STATE_LEVEL	= "playerLevel";

@Override

public void onSaveInstanceState(Bundle savedInstanceState) {

//	Save	the	user's	current	game	state

savedInstanceState.putInt(STATE_SCORE,mCurrentScore);

savedInstanceState.putInt(STATE_LEVEL,mCurrentLevel);

//	Always	call	the	superclass	so	it	can	save	the	view	hierarchy	state

super.onSaveInstanceState(savedInstanceState);

}



An	Example	of	Restoring	Your	State

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState); //	Always	call	the	superclass	first

//	Check	whether	we're	recreating	a	previously	destroyed	instance

if (savedInstanceState	!= null) {		//	Restore	value	of	members	 from	saved	state

mCurrentScore	= savedInstanceState.getInt(STATE_SCORE);

mCurrentLevel	= savedInstanceState.getInt(STATE_LEVEL);

} else {

//	Probably	 initialize	members	with	default	values	for	a	new	instance

}

}	



Common	State	Flow
• Create

• onCreate ->	onStart ->	onResume
• Start	another	activity

• onPause(1)	->	onCreate(2)	->	onStart(2)	- onResume(2)	->	
onStop(1)

• Return	to	the	original	activity
• onPause(2)	->	onRestart(1)	->	onStart(1)	->	onResume(1)	->	
onStop(2)	->	onDestroy(2)

• Back	and	finish	the	activity
• onPause ->	onStop ->	onDestroy



Hands-on	Exercise
• Reuse	your	first	app,	and	add	Log.d(TAG,	String)	in	
each	callback	of	your	activity
• For	example,	I	will	add	Log.d(TAG,	“onCreate”)	in	the	
onCreate() method


