
Android Threads



Thread

• Main	thread	(UI	thread)	
• When	an	applica3on	is	launched,	the	system	creates	the	
main	thread	

• Worker	thread	
•  perform	non-instantaneous	opera3ons	in	separate	
threads	(background	threads)	



Why we need worker thread?

• Android	enforces	a	worst	case	reac3on	3me	of	
applica3ons	
•  If	an	ac3vity	does	not	react	within	5	seconds	to	user	
input,	the	Android	system	displays	an	Applica3on	not	
responding	(ANR)	dialog	



Rules to use thread in Android

•  Do	not	block	the	UI	thread		
•  Do	not	access	the	Android	UI	toolkit	from	outside	the	
UI	thread	

hFp://developer.android.com/guide/components/
processes-and-threads.html	
	



Worker threads

•  Java	threads	
•  Not	convenient	and	has	several	limita3ons		

• AsyncTask	
•  The	simplest	way	to	use	thread	

• Handler	
•  Can	handle	mul3ple	runnable	tasks	and	messages	



Java Threads

• Android	supports	the	usage	of	the	Thread	class	to	
perform	asynchronous	processing	
•  If	you	need	to	update	the	user	interface	from	a	
new	Thread,	you	need	to	synchronize	with	the	UI	
thread	



Take ImageLoader as an Example

public	void	onClick(View	v)	{	

				new	Thread(new	Runnable()	{	

								public	void	run()	{	

												Bitmap	b	=	loadImageFromNetwork("hFp://example.com/image.png");	

												mImageView.setImageBitmap(b);	

								}	

				}).start();	

}	



Take ImageLoader as an Example

public	void	onClick(View	v)	{	

				new	Thread(new	Runnable()	{	

								public	void	run()	{	

												Bitmap	b	=	loadImageFromNetwork("hFp://example.com/image.png");	

												mImageView.setImageBitmap(b);	

								}	

				}).start();	

}	
	
	

This	seems	to	work	fine:		
a	new	thread	to	handle	the	downloading	task	
but	it	violates	the	second	rule		
->	change	UI	from	outside	UI	thread				



How to Use Java Thread to 
Update UI?
public	void	onClick(View	v)	{	

				new	Thread(new	Runnable()	{	

								public	void	run()	{	

												final	Bitmap	bitmap	=	

																				loadImageFromNetwork("hFp://example.com/image.png");	

												mImageView.post(new	Runnable()	{	

																public	void	run()	{	

																				mImageView.setImageBitmap(bitmap);	

																}	

												});	

								}	

				}).start();	

}	



Disadvantages to Use Java Thread 
in Android
• Without	synchroniza3on	with	the	UI	thread	
• Cannot	stop	the	thread	by	destroy()	or	stop()	
• No	default	for	handling	configura3on	changes	in	
Android	



The advantages of AsyncTask and 
Handler
•  They	provide	a	func3on	to	help	you	post	the	
resul3ng	data	to	UI	thread	
•  conform	the	second	rule	

• Automa3cally	handle	the	configura3on	changing	
• Have	func3on	to	stop	the	tasks	



AsyncTask

•  The	easiest	way	to	perform	a	task	in	background	
•  Each	task	can	only	be	executed	once	
•  If	you	want	to	execute	again,	you	need	to	create	a	new	
task	



Steps of AsyncTask

• onPreExecute():		
•  used	to	set	up	the	task	

• doInBackground(Params...):		
•  perform	background	computa3on	that	can	take	a	long	
3me	(must	be	overrided)	

• onProgressUpdate(Progress...):		
•  This	method	is	used	to	display	progress	

• onPostExecute(Result):		
•  result	of	the	background	computa3on	is	passed	to	this	
step	



Rules of AsyncTask

•  The	AsyncTask	class	must	be	loaded	on	the	UI	
thread	
•  execute(Params...)	must	be	invoked	on	the	UI	
thread	
• Do	not	call	the	func3ons	of	4	steps	manually	
•  The	task	can	be	executed	only	once		

Example:	SaveFile	sample	code	
hFps://dl.dropboxusercontent.com/u/21274694/
android/SaveFile.zip	
	



Handler

• When	a	Handler	is	created,	it	is	bound	to	a	specific	
Looper	(and	associated	thread	and	message	queue)	
• A	Handler	is	a	u3lity	class	that	facilitates	interac3ng	
with	a	Looper	

Message	Queue	

Runnable	
Tasks	 Message	

Looper	



Create Handler

• A	Handler	object	registers	itself	with	the	thread	
where	it	is	created	
•  If	you	create	a	new	instance	of	the	Handler	class	in	
the	onCreate()	method	of	your	ac3vity,	the	
resul3ng	Handler	object	can	be	used	to	post	data	
to	the	UI	thread	



How to Use Handler

•  To	process	a	Runnable	you	can	use	the	post()	
method	
• Override	the	handleMessage()	method	to	process	
messages	
•  Your	thread	can	send	messages	via	the	
obtainMessage(Message)	or	sendMessage(Message)	
method	to	the	Handler	object	



Samples

• Handling	Runnable	Tasks	
•  BluetoothExample	sample	
hFps://dl.dropboxusercontent.com/u/21274694/android/
BluetoothExample.zip	

• Handling	Messages	
•  BluetoothChat	Sample	
New->Import	Sample->search	bluetooth->select	
bluetooth	chat	

•  Make	discoverable	(A)	->	scan	devices	(B)	->	connected	
to	the	devices	A	(B)	->	chat	with	each	other	



Exercise

• Using	the	handler.post(Runnable)	to	make	your	
applica3on	periodically	query	the	paired	devices		
•  If	no	paired	device,	please	show	“no	paired	device”	



Steps

•  Step1:	Create	a	“Runnable”	called	
“periodicBTTask2”	
•  Step2:	Copy	and	paste	the	code	implemented	in	
“queryPairedDevices”	to	your	runnable	
•  Step3:	Use	BTHandler.post()	to	post	your	
“Runnable	(periodicBTTask2)”	to	message	queue	
•  Step4:	in	your	“Runnable	(periodicBTTask2)”,	you	
need	to	use	“BTHandler.postDelayed()”	to	make	
your	Runnable	performed	periodically	


