
File	I/O	and	Standard	I/O	Library	
Chapters	3	and	5	

CS5432	Advanced	UNIX	Programming	 1	

Cheng-Hsin	Hsu	
Na#onal	Tsing	Hua	University	

Department	of	Computer	Science	
	

Parts	of	the	course	materials	are	courtesy	of	Prof.	Chun-Ying	Huang	

Outline	

•  IntroducKon	
•  File	I/O	FuncKons	
•  File	I/O	Issues	
•  Standard	I/O	FuncKons	

2	CS5432	Advanced	UNIX	Programming	

IntroducKon	

3	CS5432	Advanced	UNIX	Programming	

Standard	Input,	Output,	and	Error	
•  A	shell	creates	standard	input,	standard	output,	and	standard	

error	when	it	runs	a	program	
•  Standard	input,	output,	and	error	can	be	piped	and/or	

redirected	
•  Examples	–	The	“cat”	program	

–  $ cat /etc/passwd
–  $ cat < /etc/passwd
–  $ cat /etc/passwd | cat | cat
–  $ cat /etc/passwd | cat | cat > /tmp/p.txt

4	CS5432	Advanced	UNIX	Programming	

File	I/O	versus	Standard	I/O		

•  File	I/O	(Unbuffered	I/O)	
– Access	via	file	descriptors	
–  Talk	to	the	kernel	directly	

•  Standard	I/O	(Buffered	I/O)	
– Access	via	wrapped	file	descriptors,	i.e.,	the	FILE	data	
structure	

– Default	wrappers	for	standard	input,	output,	and	
errors	

–  stdin,	stdout,	and	stderr	
–  The	fileno	funcKon	

5	CS5432	Advanced	UNIX	Programming	

Unbuffered	I/O	

•  DefiniKon	
–  Each	read	or	write	invokes	a	system	call	in	the	kernel	
–  Not	buffered	in	user	space	programs	and	libraries	

•  Usually	can	be	performed	by	using	only	the	five	funcKons	
–  open,	read,	write,	lseek,	and	close

6	CS5432	Advanced	UNIX	Programming	

File	Descriptors	
•  In	the	kernel,	all	opened	files	are	referred	to	by	file	

descriptors	
•  It	is	a	non-negaKve	integer	
•  A	convenKon	for	shells	and	many	applicaKons	

–  File	descriptor	0,	1,	and	2	refers	to	standard	input,	output,	and	
error,	respecKvely	

–  STDIN_FILENO	(0),	STDOUT_FILENO	(1),	
STDERR_FILENO	(2)
	--	defined	in	the	header	file	unistd.h

•  The	file	descriptors	can	be	used	in	a	process	is	ranged	
from	0	to	OPEN_MAX-1	
–  Can	be	changed	using	the	setrlimit(2)	funcKon	
–  But	it	requires	root	permissions	

7	CS5432	Advanced	UNIX	Programming	

File	and	Standard	I/O	

CS5432	Advanced	UNIX	Programming	 8	

Open/create	Files,	and	get	a	fd	 Use	fds	to	read/write/lseek	files	 Close	files	

File	I/O	FuncKons	

9	CS5432	Advanced	UNIX	Programming	

The	open(2)	FuncKon	
•  Open	a	file	
•  Synopsis	

–  int open(const char *pathname, int flags, mode_t mode);
–  Returns:	file	descriptor	opened	for	write-only	if	OK,	-1	on	error	

•  Mandatory	flags	
–  O_RDONLY
–  O_WRONLY
–  O_RDWR

•  Common	opKonal	flags	
–  O_APPEND
–  O_CREAT
–  O_EXCL
–  O_TRUNC
–  O_SYNC

10	CS5432	Advanced	UNIX	Programming	

The	creat(2)	FuncKon	

•  Open	a	file	for	write	only	
•  Synopsis	

–  int creat(const char *pathname, mode_t mode);
–  Returns:	file	descriptor	if	OK,	-1	on	error

•  It	is	equivalent	to	
–  open(pathname, O_WRONLY | O_CREAT |
O_TRUNC, mode);

11	CS5432	Advanced	UNIX	Programming	

The	close(2)	FuncKon	
•  Close	a	opened	file	
•  Synopsis	

–  int close(int filedes);
–  Returns:	0	if	OK,	-1	on	error	

•  When	a	process	terminates,	all	of	its	open	files	are	closed	
automaKcally	

12	CS5432	Advanced	UNIX	Programming	

The	lseek(2)	FuncKon		

•  Move	the	“file	pointer”	posiKon	
•  Synopsis	

–  off_t lseek(int fd, off_t offset, int whence);
–  Returns:	new	file	offset	if	OK,	-1	on	error	
–  Usually	off_t	is	32-bit	long	
–  Consider	the	lseek64()	funcKon	using	off64_t

•  Choices	of	whence	
–  SEEK_SET, SEEK_CUR, SEEK_END

•  Can	be	used	to	determine	if	a	file	is	seekable	

13	CS5432	Advanced	UNIX	Programming	

Seeking	Different	File	Types	

14	

#include "apue.h“ /* fig 3.1 */
int main(void) {
 if (lseek(STDIN_FILENO, 0, SEEK_CUR) == -1)
 printf("cannot seek\n");
 else
 printf("seek OK\n");
 exit(0);
}

$./seek < /etc/passwd
seek OK
$ cat < /etc/passwd | ./seek
cannot seek
$./seek < /var/spool/cron/FIFO
cannot seek

CS5432	Advanced	UNIX	Programming	

File	Hole	

•  The	lseek(2)	and	the	write(2)	funcKon	

15	

#include "apue.h“ /* fig 3.2 */
#include <fcntl.h>
char buf1[] = "abcdefghij“, buf2[] = "ABCDEFGHIJ";
int main(void) { int fd;

 if ((fd = creat("file.hole", FILE_MODE)) < 0)
 err_sys("creat error");
 if (write(fd, buf1, 10) != 10)
 err_sys("buf1 write error");
 /* offset now = 10 */
 if (lseek(fd, 16384, SEEK_SET) == -1)
 err_sys("lseek error");
 /* offset now = 16384 */
 if (write(fd, buf2, 10) != 10)
 err_sys("buf2 write error");
 /* offset now = 16394 */
 exit(0);

}
CS5432	Advanced	UNIX	Programming	

File	Hole	(Cont’d)	

•  The	resulted	file	with	a	hole	

•  Compare	with	a	no-hole	file	

16	

$./fig3.2-hole
$ ls -l file.hole
-rw-r--r-- 1 chuang chuang 16394 2009-01-01 11:45 file.hole
$ hexdump -C file.hole
00000000 61 62 63 64 65 66 67 68 69 6a 00 00 00 00 00 00 |abcdefghij......|
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00004000 41 42 43 44 45 46 47 48 49 4a |ABCDEFGHIJ|
0000400a

$ ls -ls file.*
 8 -rw-r--r-- 1 chuang chuang 16394 2009-01-01 11:45 file.hole
20 -rw-r--r-- 1 chuang chuang 16394 2009-01-01 11:49 file.nohole

CS5432	Advanced	UNIX	Programming	

The	read(2)	FuncKon	
•  Read	from	an	opened	file	
•  Synopsis	

–  ssize_t read(int fd, void *buf, size_t nbytes);
–  Returns:	number	of	bytes	read,	0	if	EOF,	-1	on	error	

•  File	offset	moves	forward	aier	read	
•  The	number	of	read	bytes	<=	the	number	of	requested	

bytes,	when	would	“<“	happen?	
–  Regular	file:	A	special	case	when	read	encounters	EOF	
–  Network:	Depends	on	network	buffering	state	
–  Pipe	of	FIFO:	Read	all	available	data	
–  The	read	operaKon	may	be	interrupt	by	signals	

17	CS5432	Advanced	UNIX	Programming	

The	write(2)	FuncKon	

•  Write	data	to	an	opened	file	
•  Synopsis	

–  ssize_t write(int fd, const void *buf, size_t
nbytes);

–  Returns:	number	of	bytes	wrimen	if	OK,	-1	on	error	

•  File	offset	moves	forward	aier	write	

18	CS5432	Advanced	UNIX	Programming	

File	I/O:	
Other	Issues	

19	CS5432	Advanced	UNIX	Programming	

I/O	Efficiency	

•  A	simple	“cat”	program	
–  How	to	choose	the	size	of	a	buffer?	

20	

#include "apue.h"
#define BUFFSIZE 16
int main(void) {

 int n;
 char buf[BUFFSIZE];
 while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0)
 if (write(STDOUT_FILENO, buf, n) != n)
 err_sys("write error");
 if (n < 0)
 err_sys("read error");
 exit(0);

}

CS5432	Advanced	UNIX	Programming	

Hint:	lsblk	-o	NAME,PHY-SeC	

I/O	Efficiency	(Cont’d)	

•  Command:	$./mycat < filename > /dev/null

21	CS5432	Advanced	UNIX	Programming	

Hint:	free	&&	sync	&&	echo	3	>	/proc/sys/vm/drop_caches	&&	free	

sync,	fsync,	And	fdatasync	FuncKons	

•  Delayed	write	
–  When	data	is	copied	to	the	kernel,	it	is	queued	for	wriKng	to	
disk	at	some	later	Kme	

•  Ask	the	kernel	star#ng	to	write	cached	disk	blocks	
•  For	a	specific	file	

–  int fsync(int fd); /* filedata + metadata
*/

–  int fdatasync(int fd); /* filedata only */
–  Return	values	for	the	above	two	funcKons:	0	if	OK,	-1	on	error	

•  For	all	files	ß	but	it	returns	immediately!!!	
–  void sync(void); /* filedata + metadata */

22	CS5432	Advanced	UNIX	Programming	

File	Sharing	–	An	Overview	

•  An	opened	file	can	be	shared	among	different	processes	
•  The	kernel	maintains	several	different	data	structures	for	

opened	files	
–  Each	process	has	an	entry	in	the	process	table	
–  Each	process	table	entry	contains	a	table	of	opened	file	
descriptors	

–  A	file	table	for	all	opened	files	
–  Each	file	table	is	associated	with	a	v-node	structure	

23	CS5432	Advanced	UNIX	Programming	

File	Sharing	–	Kernel	Data	Structures	

24	CS5432	Advanced	UNIX	Programming	

v-node:	v	stands	for	virtual	

i-node:	i	may	stand	for	index		

File	Sharing	–	Open	The	Same	File	

25	

File tables can be shared between
processes through fork()

CS5432	Advanced	UNIX	Programming	

Atomic	OperaKon	

•  Consider	the	following	program	

•  What	happens	if	two	process	do	the	same	thing	to	the	
same	file?	

•  Any	operaKon	that	requires	more	than	one	funcKon	call	
is	not	atomic!	

26	

if (lseek(fd, 0, 2) < 0) /* position to EOF */
 err_sys(“lseek error”);

if (write(fd, buf, 100) != 100) /* and write */
 err_sys(“write error”);

CS5432	Advanced	UNIX	Programming	

pread	And	pwrite	

•  Atomic	seek	and	read/write	
•  Synopsis	

–  ssize_t pread(int fd, void *buf, size_t nbytes, off_t
offset);

–  Returns:	number	of	bytes	read,	0	if	EOF,	-1	on	error	
–  ssize_t pwrite(int fd, const void *buf, size_t

nbytes, off_t offset);

–  Returns:	number	of	bytes	wrimen	if	OK,	-1	on	error	

•  Seek	first	and	then	read	or	write	
•  There	is	no	way	to	interrupt	the	two	operaKons	
•  The	current	file	offset	is	not	updated	

27	CS5432	Advanced	UNIX	Programming	

Atomic	CreaKng	of	A	Non-ExisKng	File	

•  Create	a	file	if	it	does	not	exist,	legacy.	Not	atomic!	

•  Can	be	atomically	done	using	open	with	O_CREAT	and	
O_EXCL
–  open(pathname, O_CREAT | O_EXCL, mode)

28	

if ((fd = open(pathname, O_WRONLY)) < 0) {
 if (errno == ENOENT) {
 if ((fd = creat(pathname, mode)) < 0)
 err_sys(“creat error”);
 } else {

 err_sys(“open error”);
 }

}

CS5432	Advanced	UNIX	Programming	

dup/dup2	FuncKons	
•  dup:	Duplicate	a	file	descriptor	
•  dup2:	Duplicate	a	file	descriptor	to	a	targeted	descriptor	

29	CS5432	Advanced	UNIX	Programming	

dup/dup2	FuncKons	(Cont’d)	
•  Synopsis	

–  int dup(int fd);
–  int dup2(int fd, fd2);
–  Returns:	both	return	the	new	file	descriptor	if	OK,	-1	on	error	

•  Equivalent	operaKons	
–  dup(fd)

•  fcntl(fd, F_DUPFD, 0);
–  dup2(fd, fd2)

•  close(fd2);
fcntl(fd, F_DUPFD, fd2);

•  dup2	is	an	atomic	operaKon	

30	CS5432	Advanced	UNIX	Programming	

Why	do	We	Need	dup/dup2	???	
•  I	think	there	are	two	reasons	

–  stdin/stdout/stderr	redirecKons	
–  copy	the	fds	for	the	child	processes	

•  Example:	
	prins("stdout,	");	
				
				fd	=	dup(fileno(stdout));	
				freopen("stdout.out",	"w",	stdout);	
				prins("stdout	in	file\n");	
				...	
				dup2(fd,	fileno(stdout));	
				prins("stdout	again\n");	
				

CS5432	Advanced	UNIX	Programming	 31	

The	fcntl	FuncKon	
•  Change	the	properKes	of	an	opened	file	
•  Synopsis	

–  int fcntl(int fd, int cmd, … /* int arg */);
–  Returns:	depends	on	cmd	if	OK,	-1	on	error	

•  Common	commands	
–  F_DUPFD	–	duplicate	the	file	descriptor	
–  F_GETFD/F_SETFD	–	get	or	set	the	file	descriptor	flag	

•  supports	only	FD_CLOEXEC	(close-on-exec)	ß	so	that	the	child	
processes	won’t	get	the	FDs…	

–  F_GETFL/F_SETFL	–	get	or	set	the	file	status	flags	
•  O_RDONLY, O_WRONLY, O_RDWR, O_APPEND,
O_NONBLOCK, O_SYNC,	…	

32	CS5432	Advanced	UNIX	Programming	

What’s	the	difference	between		
file	descriptor	flags	and	file		
status	flags?	

Sample	Usage	of	fcntl		

CS5432	Advanced	UNIX	Programming	 33	

The	messy	bitmaps	we		
discussed	earlier!	

Try	these:	
•  ./fileflags		0	<	/dev/my	
•  ./fileflags	1	>	/tmp/out.txt	
•  cat	!$	
•  ./fileflags	1	>>	/tmp/out.txt	
•  cat	!$	
•  ./fileflags	5	5<>/tmp/tmp.txt	

Bit	ManipulaKons	

•  Three	popular	operands	
–  >>	is	the	arithmeKc	(or	signed)	right	shii	operator.	
–  >>>	is	the	logical	(or	unsigned)	right	shii	operator.	
–  <<	is	the	lei	shii	operator,	and	meets	the	needs	of	
both	logical	and	arithmeKc	shiis.	

•  Example:	
–  #		define	CIA_CTRL_PCI_EN															 		(1	<<	0)	
–  #		define	CIA_CTRL_PCI_LOCK_EN										(1	<<	1)	
–  #		define	CIA_CTRL_PCI_LOOP_EN										(1	<<	2)	

CS5432	Advanced	UNIX	Programming	 34	

The	fcntl	FuncKon	–	Change	Status	Flags	

•  Enable:							val |= flags;
•  Disable: 	val &= ~flags;

35	

#include "apue.h"
#include <fcntl.h>
void set_fl(int fd, int flags)

 /* flags are file status flags to turn on */
{

 int val;

 if ((val = fcntl(fd, F_GETFL, 0)) < 0)
 err_sys("fcntl F_GETFL error");
 val |= flags; /* turn on flags */
 if (fcntl(fd, F_SETFL, val) < 0)
 err_sys("fcntl F_SETFL error");

}

CS5432	Advanced	UNIX	Programming	

Why	do	I	show	you	this		
code	snippet?		

The	ioctl(2)	FuncKon	
•  The	ulKmate	funcKon	to	control	all	I/O	operaKons	
•  Synopsis	

–  int ioctl(int fd, int request, …);
–  Returns:	-1	on	error,	something	else	if	OK	

•  There	is	no	standard	for	the	ioctl	func#on	
–  Each	device	driver	can	define	its	own	set	of	ioctl	commands,	
a	common	method	to	handle	user-kernel	interacKons	

•  The	request	is	a	device	dependent	request	code	
•  The	third	argument	is	usually	an	untyped	pointer	to	

memory	

36	CS5432	Advanced	UNIX	Programming	

Sample	of	ioctl	FuncKon	
staKc	int	
e100_ioctl(struct	net_device	*dev,	struct	ifreq	*ifr,	int	cmd)	
{				
				struct	mii_ioctl_data	*data	=	if_mii(ifr);	
				struct	net_local	*np	=	netdev_priv(dev);	
				int	rc	=	0;	
					int	old_autoneg;	
					
				spin_lock(&np->lock);	/*	Preempt	protecKon	*/	
				switch	(cmd)	{	
								/*	The	ioctls	below	should	be	considered	obsolete	but	are	*/	
								/*	sKll	present	for	compaKbility	with	old	scripts/apps		*/	
								case	SET_ETH_SPEED_10:																		/*	10	Mbps	*/	
												e100_set_speed(dev,	10);	
												break;	
								case	SET_ETH_SPEED_100:																/*	100	Mbps	*/	
												e100_set_speed(dev,	100);	
												break;	
	

CS5432	Advanced	UNIX	Programming	 37	

/dev/fd	
•  Modern	systems	provide	a	/dev/fd	directory	
•  It	is	a	virtual	file	system	
•  Each	process	has	its	own	view	of	/dev/fd
•  Assume	that	descriptor	n	has	been	opened,	open	the	

file	/dev/fd/n	is	equivalent	to	duplicate	descriptor	n	
–  fd = open("/dev/fd/0", mode);
–  fd = dup(0);

•  The	main	usage	of	the	/dev/fd	files	is	from	the	shell	
•  Allow	programs	to	handle	standard	input	and	standard	

output	as	regular	files

38	CS5432	Advanced	UNIX	Programming	

Compare:	
•  cat	/etc/passwd	|	cat	–	
•  cat	/etc/passwd	|	cat	/dev/fd/0	

STANDARD	I/O	FUNCTIONS	

39	CS5432	Advanced	UNIX	Programming	

Standard	(Buffered)	I/O	

•  Standard	I/O	handles	…	ß	different	from	file	I/O	
–  Buffer	allocaKon	
–  Perform	I/O	in	opKmal-sized	chunks	

•  Standard	I/O	is	easier	to	use	
•  The	FILE	structure	

–  Treat	all	opened	files	as	a	stream	
–  Associate	the	stream	with	an	underlying	file	descriptor	ß	what	
we	learned	last	week	

–  Maintain	buffer	states	

40	CS5432	Advanced	UNIX	Programming	

Buffering	
•  Fully	buffered	

–  Files	residing	on	disk	are	normally	fully	buffered	by	the	standard	
I/O	library	

–  The	buffer	used	is	usually	obtained	by	one	of	the	standard	I/O	
funcKons	calling	malloc	the	first	Kme	I/O	is	performed	on	a	
stream	ß	before	calling	the	malloc,	the	pointer	==	NULL	

•  Line	buffered	
–  the	standard	I/O	library	performs	I/O	when	a	newline	character	
is	encountered	on	input	or	output	

–  Caveats	
•  Buffer	size	is	limited	–	I/O	may	be	performed	before	a	newline	
•  Before	read,	all	line-buffered	output	streams	are	flushed	

•  Unbuffered	

41	CS5432	Advanced	UNIX	Programming	

Default	Buffering	Modes	

•  ISO	C:	the	standard	
–  Standard	input	and	standard	output	are	fully	buffered,	if	and	
only	if	they	do	not	refer	to	an	interac#ve	device	

–  Standard	error	is	never	fully	buffered	ß	Why?	

•  Most	implementaKons	follow	the	below	convenKon:	
–  Standard	error	is	always	unbuffered	
–  All	other	streams	are	line	buffered	if	they	refer	to	a	terminal	
device;	otherwise,	they	are	fully	buffered	

42	CS5432	Advanced	UNIX	Programming	

FuncKons	for	Se}ng	Buffer	
•  Synopsis	

–  void	setbuf(FILE	*fp,	char	*buf);	
•  buf	must	be	the	size	of	BUFSIZ	

–  int	setvbuf(FILE	*fp,	char	*buf,	int	mode,	size_t	size);		
–  Returns:	0	if	OK,	nonzero	on	error	
–  Need	to	be	done	before	the	first	file	access	

•  Buffering	is	disabled	if	buf	is	NULL	
•  Buffering	mode	

–  _IOFBF:	fully	buffered	
–  _IOLBF:	line	buffered	
–  _IONBF:	unbuffered	

43	CS5432	Advanced	UNIX	Programming	

Open	Files	
•  Open	files	

–  FILE*	fopen(char	*pathname,	char	*mode);	
–  FILE	*freopen(char	*pathname,	char	*mode,	FILE	*fp);	
–  FILE	*fdopen(int	fd,	char	*mode);	
–  Returns:	file	pointer	if	OK,	NULL	on	error	

•  modes	
–  r	or	rb:	open	for	reading	
–  w	or	wb:	truncate	to	0	length	or	create	for	wriKng	
–  a	or	ab:	append,	open	for	wriKng	at	EOF	or	create	for	wriKng	
–  r+,	r+b,	or	rb+:	open	for	reading	and	wriKng	
–  w+,	w+b,	or	wb+:	equivalent	to	w	or	wb	plus	reading	
–  a+,	a+b,	or	ab+:	equivalent	to	a	or	ab	plus	reading	
–  Note:	UNIX	does	not	require	t	(text)	mode	for	text	files	

44	CS5432	Advanced	UNIX	Programming	

Read	and	Write	a	String	–	By	Character	

•  Read	
–  int	getc(FILE	*fp); 	 	int	fgetc(FILE	*fp);	
–  int	getchar(void);	
–  Returns:	next	character	if	OK,	EOF	on	EOF	or	error	

•  How	to	tell	EOF	or	error?	
–  int	ferror(FILE	*fp);	int	feof(FILE	*fp);	
–  Returns:	nonzero	(true)	if	a	condiKon	is	true,	or	zero	(false)	otherwise	

•  Write	
–  int	putc(int	c,	FILE	*fp); 	int	fputc(int	c,	FILE	*fp);	
–  int	putchar(int	c);	
–  Returns:	c	if	OK,	EOF	on	error	

45	CS5432	Advanced	UNIX	Programming	

•  getc	(…)	and	putc(...)	can		
be	implemented	as	macros		

Macro	versus	FuncKon	Calls	

•  Arguments	of	getc(…)	should	not	have	any	
side	effects,	cuz	it	may	be	evaluated	mulKple	
Kmes	

•  We	can	pass	fgetc(...)	as	a	funcKon	pointer	to	
other	funcKons	

•  Calling	fgetc(...)	probably	takes	longer	

CS5432	Advanced	UNIX	Programming	 46	

Reading	Char-by-Char:	Example	

CS5432	Advanced	UNIX	Programming	 47	

What	does	this	funcKon	do?	

Read	and	Write	a	String	–	By	Line	
•  Read	

–  char	*fgets(char	*buf,	int	n,	FILE	*fp);	
–  char	*gets(char	*buf);	
–  Returns:	buf	if	OK,	NULL	on	end	of	file	or	error	

•  Write	
–  int	fputs(char	*str,	FILE	*fp);	
–  int	puts(char	*str);	
–  Returns:	non-negaKve	value	if	OK,	EOF	on	error	

48	CS5432	Advanced	UNIX	Programming	

Using	gets(…)	is	a	bad	idea,	why?	

Reading	Line-by-Line:	Example	

CS5432	Advanced	UNIX	Programming	 49	

Standard	I/O	Efficiency	

•  Performance	of	reading	a	98.5MB	file	from	stdin	(roughly	
3	million	lines)	and	wriKng	to	stdout	(/dev/null)	

50	CS5432	Advanced	UNIX	Programming	

Binary	I/O	

•  Synopsis	
– size_t	fread(void	*ptr,	size_t	size,	size_t	nobj,	FILE	
*fp);	

– size_t	fwrite(void	*ptr,	size_t	size,	size_t	nobj,	FILE	
*fp);	

– Returns:	number	of	objects	read	or	wrimen	

•  Read/write	mulKple	objects	in	each	invocaKon	

51	CS5432	Advanced	UNIX	Programming	

Binary	I/O	–	Examples	

•  Example	#1	

•  Example	#2	

•  Notes	
–  The	offset	of	a	member	
within	a	structure	can	
differ	between	compilers	
and	systems	ß	aligned	or	
not	for	speed	versus	space	

–  The	binary	formats	used	to	
store	mulKbyte	integers	
and	floaKng-point	values	
differ	among	machine	
architectures	ß	big/limle	
endian		

52	

float	data[10];	
if	(fwrite(&data[2],	sizeof(float),	4,	fp)	!=	4)	
	 	err_sys("fwrite	error");		

struct	{ 	short 	count;	
	long	total;	
	char	name[NAMESIZE];	

}	item;	
if	(fwrite(&item,	sizeof(item),	1,	fp)	!=	1)	

	err_sys("fwrite	error");	

CS5432	Advanced	UNIX	Programming	

PosiKoning	a	Stream	

•  Similar	to	seek	…	
–  int	fseek(FILE	*fp,	long	offset,	int	whence);	
–  long	bell(FILE	*fp);	
– void	rewind(FILE	*fp);	

•  Similar	funcKons	with	offset	off_t	ß	why?	
– off_t	bello(…)	and	int	fseeko	(....)			

•  ISO	C	standard:	fgetpos(...)	and	fsetpos(...),	
bemer	for	porKng	to	non-UNIX		systems	

53	CS5432	Advanced	UNIX	Programming	

Temporary	Files	
•  Create	a	temporary	file	
•  Synopsis	

–  char	*tmpnam(char	*ptr);	
–  Returns:	pointer	to	unique	pathname	
–  FILE	*tmpfile(void);	
–  Returns:	file	pointer	if	OK,	NULL	on	error	

•  It	is	not	recommend	to	use	tmpnam	
–  It	uses	a	staKc	buffer	to	store	generated	filename	ß	something	may	

happen	between	calling	tmpnam	and	open	file…	
–  As	the	generated	name	are	/tmp/fileXXXXXX,	it	might	be	guessed	
–  SoluKons	

•  Use	tmpfile	or	mkstemp	instead	
•  Open	the	temporary	file	using	open(2)	with	the	O_EXCL	flag	

54	CS5432	Advanced	UNIX	Programming	

What	is	Wrong	with	the	Example?	

CS5432	Advanced	UNIX	Programming	 55	

Reading	Assignments	

•  Chapter	3:	File	I/O	
•  Chapter	5:	Standard	I/O	Library	

CS5432	Advanced	UNIX	Programming	 56	

QUESTION?	

CS5432	Advanced	UNIX	Programming	 57	

Assignment	#2	(5%)	
•  Write	your	own	dup2	funcKon	that	behaves	the	same	way	as	the	

dup2	funcKon	described	in	SecKon	3.12,	without	calling	the	fcntl	
funcKon.	Be	sure	to	handle	errors	correctly.	

•  Hint:	If	fcntl	cannot	be	invoked,	you	will	have	to	use	dup.	Then	you	
have	no	control	over	which	file	descriptor	will	be	used	by	the	dup	
funcKon	call.	Try	to	design	a	workaround	of	this.		

•  Submission:	
–  (1%)	Submit	you	pseudocode	in	plan-text,	with	the	file	name:	

hw02_[YourStudentID].txt	
–  (3%)	Submit	your	code	with	the	file	name:	hw02_[YourStudentID].c	.	

You	get	3	points	once	your	code	can	handle	normal	test	cases	
prepared	by	TA.				

–  (1%)	You	get	one	more	point	if	you	handle	all	the	errors	correctly.		
•  Due	date:	Oct	4th	

CS5432	Advanced	UNIX	Programming	 58	

