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IntroducKon	

3	CS5432	Advanced	UNIX	Programming	



Standard	Input,	Output,	and	Error	
•  A	shell	creates	standard	input,	standard	output,	and	standard	

error	when	it	runs	a	program	
•  Standard	input,	output,	and	error	can	be	piped	and/or	

redirected	
•  Examples	–	The	“cat”	program	

–  $ cat /etc/passwd 
–  $ cat < /etc/passwd 
–  $ cat /etc/passwd | cat | cat 
–  $ cat /etc/passwd | cat | cat > /tmp/p.txt 

4	CS5432	Advanced	UNIX	Programming	



File	I/O	versus	Standard	I/O		

•  File	I/O	(Unbuffered	I/O)	
– Access	via	file	descriptors	
–  Talk	to	the	kernel	directly	

•  Standard	I/O	(Buffered	I/O)	
– Access	via	wrapped	file	descriptors,	i.e.,	the	FILE	data	
structure	

– Default	wrappers	for	standard	input,	output,	and	
errors	

–  stdin,	stdout,	and	stderr	
–  The	fileno	funcKon	
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Unbuffered	I/O	

•  DefiniKon	
–  Each	read	or	write	invokes	a	system	call	in	the	kernel	
–  Not	buffered	in	user	space	programs	and	libraries	

•  Usually	can	be	performed	by	using	only	the	five	funcKons	
–  open,	read,	write,	lseek,	and	close 

6	CS5432	Advanced	UNIX	Programming	



File	Descriptors	
•  In	the	kernel,	all	opened	files	are	referred	to	by	file	

descriptors	
•  It	is	a	non-negaKve	integer	
•  A	convenKon	for	shells	and	many	applicaKons	

–  File	descriptor	0,	1,	and	2	refers	to	standard	input,	output,	and	
error,	respecKvely	

–  STDIN_FILENO	(0),	STDOUT_FILENO	(1),	
STDERR_FILENO	(2) 
	--	defined	in	the	header	file	unistd.h 

•  The	file	descriptors	can	be	used	in	a	process	is	ranged	
from	0	to	OPEN_MAX-1	
–  Can	be	changed	using	the	setrlimit(2)	funcKon	
–  But	it	requires	root	permissions	
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File	and	Standard	I/O	
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Open/create	Files,	and	get	a	fd	 Use	fds	to	read/write/lseek	files	 Close	files	



File	I/O	FuncKons	
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The	open(2)	FuncKon	
•  Open	a	file	
•  Synopsis	

–  int open(const char *pathname, int flags, mode_t mode); 
–  Returns:	file	descriptor	opened	for	write-only	if	OK,	-1	on	error	

•  Mandatory	flags	
–  O_RDONLY 
–  O_WRONLY 
–  O_RDWR 

•  Common	opKonal	flags	
–  O_APPEND 
–  O_CREAT 
–  O_EXCL 
–  O_TRUNC 
–  O_SYNC 
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The	creat(2)	FuncKon	

•  Open	a	file	for	write	only	
•  Synopsis	

–  int creat(const char *pathname, mode_t mode); 
–  Returns:	file	descriptor	if	OK,	-1	on	error 

•  It	is	equivalent	to	
–  open(pathname, O_WRONLY | O_CREAT | 
O_TRUNC, mode); 
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The	close(2)	FuncKon	
•  Close	a	opened	file	
•  Synopsis	

–  int close(int filedes); 
–  Returns:	0	if	OK,	-1	on	error	

•  When	a	process	terminates,	all	of	its	open	files	are	closed	
automaKcally	

12	CS5432	Advanced	UNIX	Programming	



The	lseek(2)	FuncKon		

•  Move	the	“file	pointer”	posiKon	
•  Synopsis	

–  off_t lseek(int fd, off_t offset, int whence); 
–  Returns:	new	file	offset	if	OK,	-1	on	error	
–  Usually	off_t	is	32-bit	long	
–  Consider	the	lseek64()	funcKon	using	off64_t 

•  Choices	of	whence	
–  SEEK_SET, SEEK_CUR, SEEK_END 

•  Can	be	used	to	determine	if	a	file	is	seekable	
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Seeking	Different	File	Types	
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#include "apue.h“  /* fig 3.1 */ 
int main(void) { 
        if (lseek(STDIN_FILENO, 0, SEEK_CUR) == -1) 
                printf("cannot seek\n"); 
        else 
                printf("seek OK\n"); 
        exit(0); 
} 

$ ./seek < /etc/passwd 
seek OK 
$ cat < /etc/passwd | ./seek 
cannot seek 
$ ./seek < /var/spool/cron/FIFO 
cannot seek 
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File	Hole	

•  The	lseek(2)	and	the	write(2)	funcKon	
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#include "apue.h“  /* fig 3.2 */ 
#include <fcntl.h> 
char  buf1[] = "abcdefghij“, buf2[] = "ABCDEFGHIJ"; 
int main(void) {  int fd; 

 if ((fd = creat("file.hole", FILE_MODE)) < 0) 
  err_sys("creat error"); 
 if (write(fd, buf1, 10) != 10) 
  err_sys("buf1 write error"); 
 /* offset now = 10 */ 
 if (lseek(fd, 16384, SEEK_SET) == -1) 
  err_sys("lseek error"); 
 /* offset now = 16384 */ 
 if (write(fd, buf2, 10) != 10) 
  err_sys("buf2 write error"); 
 /* offset now = 16394 */ 
 exit(0); 

} 
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File	Hole	(Cont’d)	

•  The	resulted	file	with	a	hole	

•  Compare	with	a	no-hole	file	
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$ ./fig3.2-hole 
$ ls -l file.hole 
-rw-r--r-- 1 chuang chuang 16394 2009-01-01 11:45 file.hole 
$ hexdump -C file.hole 
00000000  61 62 63 64 65 66 67 68  69 6a 00 00 00 00 00 00  |abcdefghij......| 
00000010  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................| 
* 
00004000  41 42 43 44 45 46 47 48  49 4a                    |ABCDEFGHIJ| 
0000400a 

 

$ ls -ls file.* 
 8 -rw-r--r-- 1 chuang chuang 16394 2009-01-01 11:45 file.hole 
20 -rw-r--r-- 1 chuang chuang 16394 2009-01-01 11:49 file.nohole 
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The	read(2)	FuncKon	
•  Read	from	an	opened	file	
•  Synopsis	

–  ssize_t read(int fd, void *buf, size_t nbytes); 
–  Returns:	number	of	bytes	read,	0	if	EOF,	-1	on	error	

•  File	offset	moves	forward	aier	read	
•  The	number	of	read	bytes	<=	the	number	of	requested	

bytes,	when	would	“<“	happen?	
–  Regular	file:	A	special	case	when	read	encounters	EOF	
–  Network:	Depends	on	network	buffering	state	
–  Pipe	of	FIFO:	Read	all	available	data	
–  The	read	operaKon	may	be	interrupt	by	signals	
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The	write(2)	FuncKon	

•  Write	data	to	an	opened	file	
•  Synopsis	

–  ssize_t write(int fd, const void *buf, size_t 
nbytes); 

–  Returns:	number	of	bytes	wrimen	if	OK,	-1	on	error	

•  File	offset	moves	forward	aier	write	
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File	I/O:	
Other	Issues	
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I/O	Efficiency	

•  A	simple	“cat”	program	
–  How	to	choose	the	size	of	a	buffer?	
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#include "apue.h" 
#define  BUFFSIZE  16 
int main(void) { 

 int  n; 
 char  buf[BUFFSIZE]; 
 while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0) 
  if (write(STDOUT_FILENO, buf, n) != n) 
   err_sys("write error"); 
 if (n < 0) 
  err_sys("read error"); 
 exit(0); 

} 
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I/O	Efficiency	(Cont’d)	

•  Command:	$ ./mycat < filename > /dev/null 
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Hint:	free	&&	sync	&&	echo	3	>	/proc/sys/vm/drop_caches	&&	free	



sync,	fsync,	And	fdatasync	FuncKons	

•  Delayed	write	
–  When	data	is	copied	to	the	kernel,	it	is	queued	for	wriKng	to	
disk	at	some	later	Kme	

•  Ask	the	kernel	star#ng	to	write	cached	disk	blocks	
•  For	a	specific	file	

–  int fsync(int fd); /* filedata + metadata 
*/ 

–  int fdatasync(int fd); /* filedata only */ 
–  Return	values	for	the	above	two	funcKons:	0	if	OK,	-1	on	error	

•  For	all	files	ß	but	it	returns	immediately!!!	
–  void sync(void); /* filedata + metadata */ 
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File	Sharing	–	An	Overview	

•  An	opened	file	can	be	shared	among	different	processes	
•  The	kernel	maintains	several	different	data	structures	for	

opened	files	
–  Each	process	has	an	entry	in	the	process	table	
–  Each	process	table	entry	contains	a	table	of	opened	file	
descriptors	

–  A	file	table	for	all	opened	files	
–  Each	file	table	is	associated	with	a	v-node	structure	
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File	Sharing	–	Kernel	Data	Structures	
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v-node:	v	stands	for	virtual	

i-node:	i	may	stand	for	index		



File	Sharing	–	Open	The	Same	File	

25	

File tables can be shared between 
processes through fork() 
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Atomic	OperaKon	

•  Consider	the	following	program	

•  What	happens	if	two	process	do	the	same	thing	to	the	
same	file?	

•  Any	operaKon	that	requires	more	than	one	funcKon	call	
is	not	atomic!	

26	

if (lseek(fd, 0, 2) < 0)   /* position to EOF */ 
 err_sys(“lseek error”); 

if (write(fd, buf, 100) != 100)  /* and write */ 
 err_sys(“write error”); 
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pread	And	pwrite	

•  Atomic	seek	and	read/write	
•  Synopsis	

–  ssize_t pread(int fd, void *buf, size_t nbytes, off_t 
offset); 

–  Returns:	number	of	bytes	read,	0	if	EOF,	-1	on	error	
–  ssize_t pwrite(int fd, const void *buf, size_t 

nbytes, off_t offset); 

–  Returns:	number	of	bytes	wrimen	if	OK,	-1	on	error	

•  Seek	first	and	then	read	or	write	
•  There	is	no	way	to	interrupt	the	two	operaKons	
•  The	current	file	offset	is	not	updated	
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Atomic	CreaKng	of	A	Non-ExisKng	File	

•  Create	a	file	if	it	does	not	exist,	legacy.	Not	atomic!	

•  Can	be	atomically	done	using	open	with	O_CREAT	and	
O_EXCL 
–  open(pathname, O_CREAT | O_EXCL, mode) 

28	

if ((fd = open(pathname, O_WRONLY)) < 0) { 
 if (errno == ENOENT) { 
  if ((fd = creat(pathname, mode)) < 0) 
   err_sys(“creat error”); 
 } else { 

  err_sys(“open error”); 
 } 

} 
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dup/dup2	FuncKons	
•  dup:	Duplicate	a	file	descriptor	
•  dup2:	Duplicate	a	file	descriptor	to	a	targeted	descriptor	
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dup/dup2	FuncKons	(Cont’d)	
•  Synopsis	

–  int dup(int fd); 
–  int dup2(int fd, fd2); 
–  Returns:	both	return	the	new	file	descriptor	if	OK,	-1	on	error	

•  Equivalent	operaKons	
–  dup(fd) 

•  fcntl(fd, F_DUPFD, 0); 
–  dup2(fd, fd2) 

•  close(fd2); 
fcntl(fd, F_DUPFD, fd2); 

•  dup2	is	an	atomic	operaKon	
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Why	do	We	Need	dup/dup2	???	
•  I	think	there	are	two	reasons	

–  stdin/stdout/stderr	redirecKons	
–  copy	the	fds	for	the	child	processes	

•  Example:	
	prins("stdout,	");	
				....	
				fd	=	dup(fileno(stdout));	
				freopen("stdout.out",	"w",	stdout);	
				prins("stdout	in	file\n");	
				...	
				dup2(fd,	fileno(stdout));	
				prins("stdout	again\n");	
				....	
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The	fcntl	FuncKon	
•  Change	the	properKes	of	an	opened	file	
•  Synopsis	

–  int fcntl(int fd, int cmd, … /* int arg */); 
–  Returns:	depends	on	cmd	if	OK,	-1	on	error	

•  Common	commands	
–  F_DUPFD	–	duplicate	the	file	descriptor	
–  F_GETFD/F_SETFD	–	get	or	set	the	file	descriptor	flag	

•  supports	only	FD_CLOEXEC	(close-on-exec)	ß	so	that	the	child	
processes	won’t	get	the	FDs…	

–  F_GETFL/F_SETFL	–	get	or	set	the	file	status	flags	
•  O_RDONLY, O_WRONLY, O_RDWR, O_APPEND, 
O_NONBLOCK, O_SYNC,	…	
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What’s	the	difference	between		
file	descriptor	flags	and	file		
status	flags?	



Sample	Usage	of	fcntl		
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The	messy	bitmaps	we		
discussed	earlier!	

Try	these:	
•  ./fileflags		0	<	/dev/my	
•  ./fileflags	1	>	/tmp/out.txt	
•  cat	!$	
•  ./fileflags	1	>>	/tmp/out.txt	
•  cat	!$	
•  ./fileflags	5	5<>/tmp/tmp.txt	



Bit	ManipulaKons	

•  Three	popular	operands	
–  >>	is	the	arithmeKc	(or	signed)	right	shii	operator.	
–  >>>	is	the	logical	(or	unsigned)	right	shii	operator.	
–  <<	is	the	lei	shii	operator,	and	meets	the	needs	of	
both	logical	and	arithmeKc	shiis.	

•  Example:	
–  #		define	CIA_CTRL_PCI_EN															 		(1	<<	0)	
–  #		define	CIA_CTRL_PCI_LOCK_EN										(1	<<	1)	
–  #		define	CIA_CTRL_PCI_LOOP_EN										(1	<<	2)	
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The	fcntl	FuncKon	–	Change	Status	Flags	

•  Enable:							val |= flags; 
•  Disable: 	val &= ~flags; 
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#include "apue.h" 
#include <fcntl.h> 
void set_fl(int fd, int flags) 

 /* flags are file status flags to turn on */ 
{ 

 int val; 
 

 if ((val = fcntl(fd, F_GETFL, 0)) < 0) 
  err_sys("fcntl F_GETFL error"); 
 val |= flags;   /* turn on flags */ 
 if (fcntl(fd, F_SETFL, val) < 0) 
  err_sys("fcntl F_SETFL error"); 

} 
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Why	do	I	show	you	this		
code	snippet?		



The	ioctl(2)	FuncKon	
•  The	ulKmate	funcKon	to	control	all	I/O	operaKons	
•  Synopsis	

–  int ioctl(int fd, int request, …); 
–  Returns:	-1	on	error,	something	else	if	OK	

•  There	is	no	standard	for	the	ioctl	func#on	
–  Each	device	driver	can	define	its	own	set	of	ioctl	commands,	
a	common	method	to	handle	user-kernel	interacKons	

•  The	request	is	a	device	dependent	request	code	
•  The	third	argument	is	usually	an	untyped	pointer	to	

memory	
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Sample	of	ioctl	FuncKon	
staKc	int	
e100_ioctl(struct	net_device	*dev,	struct	ifreq	*ifr,	int	cmd)	
{				
				struct	mii_ioctl_data	*data	=	if_mii(ifr);	
				struct	net_local	*np	=	netdev_priv(dev);	
				int	rc	=	0;	
					int	old_autoneg;	
					
				spin_lock(&np->lock);	/*	Preempt	protecKon	*/	
				switch	(cmd)	{	
								/*	The	ioctls	below	should	be	considered	obsolete	but	are	*/	
								/*	sKll	present	for	compaKbility	with	old	scripts/apps		*/	
								case	SET_ETH_SPEED_10:																		/*	10	Mbps	*/	
												e100_set_speed(dev,	10);	
												break;	
								case	SET_ETH_SPEED_100:																/*	100	Mbps	*/	
												e100_set_speed(dev,	100);	
												break;	
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/dev/fd	
•  Modern	systems	provide	a	/dev/fd	directory	
•  It	is	a	virtual	file	system	
•  Each	process	has	its	own	view	of	/dev/fd 
•  Assume	that	descriptor	n	has	been	opened,	open	the	

file	/dev/fd/n	is	equivalent	to	duplicate	descriptor	n	
–  fd = open("/dev/fd/0", mode); 
–  fd = dup(0); 

•  The	main	usage	of	the	/dev/fd	files	is	from	the	shell	
•  Allow	programs	to	handle	standard	input	and	standard	

output	as	regular	files 
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Compare:	
•  cat	/etc/passwd	|	cat	–	
•  cat	/etc/passwd	|	cat	/dev/fd/0	



STANDARD	I/O	FUNCTIONS	
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Standard	(Buffered)	I/O	

•  Standard	I/O	handles	…	ß	different	from	file	I/O	
–  Buffer	allocaKon	
–  Perform	I/O	in	opKmal-sized	chunks	

•  Standard	I/O	is	easier	to	use	
•  The	FILE	structure	

–  Treat	all	opened	files	as	a	stream	
–  Associate	the	stream	with	an	underlying	file	descriptor	ß	what	
we	learned	last	week	

–  Maintain	buffer	states	
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Buffering	
•  Fully	buffered	

–  Files	residing	on	disk	are	normally	fully	buffered	by	the	standard	
I/O	library	

–  The	buffer	used	is	usually	obtained	by	one	of	the	standard	I/O	
funcKons	calling	malloc	the	first	Kme	I/O	is	performed	on	a	
stream	ß	before	calling	the	malloc,	the	pointer	==	NULL	

•  Line	buffered	
–  the	standard	I/O	library	performs	I/O	when	a	newline	character	
is	encountered	on	input	or	output	

–  Caveats	
•  Buffer	size	is	limited	–	I/O	may	be	performed	before	a	newline	
•  Before	read,	all	line-buffered	output	streams	are	flushed	

•  Unbuffered	
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Default	Buffering	Modes	

•  ISO	C:	the	standard	
–  Standard	input	and	standard	output	are	fully	buffered,	if	and	
only	if	they	do	not	refer	to	an	interac#ve	device	

–  Standard	error	is	never	fully	buffered	ß	Why?	

•  Most	implementaKons	follow	the	below	convenKon:	
–  Standard	error	is	always	unbuffered	
–  All	other	streams	are	line	buffered	if	they	refer	to	a	terminal	
device;	otherwise,	they	are	fully	buffered	
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FuncKons	for	Se}ng	Buffer	
•  Synopsis	

–  void	setbuf(FILE	*fp,	char	*buf);	
•  buf	must	be	the	size	of	BUFSIZ	

–  int	setvbuf(FILE	*fp,	char	*buf,	int	mode,	size_t	size);		
–  Returns:	0	if	OK,	nonzero	on	error	
–  Need	to	be	done	before	the	first	file	access	

•  Buffering	is	disabled	if	buf	is	NULL	
•  Buffering	mode	

–  _IOFBF:	fully	buffered	
–  _IOLBF:	line	buffered	
–  _IONBF:	unbuffered	
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Open	Files	
•  Open	files	

–  FILE*	fopen(char	*pathname,	char	*mode);	
–  FILE	*freopen(char	*pathname,	char	*mode,	FILE	*fp);	
–  FILE	*fdopen(int	fd,	char	*mode);	
–  Returns:	file	pointer	if	OK,	NULL	on	error	

•  modes	
–  r	or	rb:	open	for	reading	
–  w	or	wb:	truncate	to	0	length	or	create	for	wriKng	
–  a	or	ab:	append,	open	for	wriKng	at	EOF	or	create	for	wriKng	
–  r+,	r+b,	or	rb+:	open	for	reading	and	wriKng	
–  w+,	w+b,	or	wb+:	equivalent	to	w	or	wb	plus	reading	
–  a+,	a+b,	or	ab+:	equivalent	to	a	or	ab	plus	reading	
–  Note:	UNIX	does	not	require	t	(text)	mode	for	text	files	
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Read	and	Write	a	String	–	By	Character	

•  Read	
–  int	getc(FILE	*fp); 	 	int	fgetc(FILE	*fp);	
–  int	getchar(void);	
–  Returns:	next	character	if	OK,	EOF	on	EOF	or	error	

•  How	to	tell	EOF	or	error?	
–  int	ferror(FILE	*fp);	int	feof(FILE	*fp);	
–  Returns:	nonzero	(true)	if	a	condiKon	is	true,	or	zero	(false)	otherwise	

•  Write	
–  int	putc(int	c,	FILE	*fp); 	int	fputc(int	c,	FILE	*fp);	
–  int	putchar(int	c);	
–  Returns:	c	if	OK,	EOF	on	error	
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•  getc	(…)	and	putc(...)	can		
be	implemented	as	macros		



Macro	versus	FuncKon	Calls	

•  Arguments	of	getc(…)	should	not	have	any	
side	effects,	cuz	it	may	be	evaluated	mulKple	
Kmes	

•  We	can	pass	fgetc(...)	as	a	funcKon	pointer	to	
other	funcKons	

•  Calling	fgetc(...)	probably	takes	longer	
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Reading	Char-by-Char:	Example	
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What	does	this	funcKon	do?	



Read	and	Write	a	String	–	By	Line	
•  Read	

–  char	*fgets(char	*buf,	int	n,	FILE	*fp);	
–  char	*gets(char	*buf);	
–  Returns:	buf	if	OK,	NULL	on	end	of	file	or	error	

•  Write	
–  int	fputs(char	*str,	FILE	*fp);	
–  int	puts(char	*str);	
–  Returns:	non-negaKve	value	if	OK,	EOF	on	error	
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Using	gets(…)	is	a	bad	idea,	why?	



Reading	Line-by-Line:	Example	
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Standard	I/O	Efficiency	

•  Performance	of	reading	a	98.5MB	file	from	stdin	(roughly	
3	million	lines)	and	wriKng	to	stdout	(/dev/null)	
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Binary	I/O	

•  Synopsis	
– size_t	fread(void	*ptr,	size_t	size,	size_t	nobj,	FILE	
*fp);	

– size_t	fwrite(void	*ptr,	size_t	size,	size_t	nobj,	FILE	
*fp);	

– Returns:	number	of	objects	read	or	wrimen	

•  Read/write	mulKple	objects	in	each	invocaKon	
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Binary	I/O	–	Examples	

•  Example	#1	

•  Example	#2	

•  Notes	
–  The	offset	of	a	member	
within	a	structure	can	
differ	between	compilers	
and	systems	ß	aligned	or	
not	for	speed	versus	space	

–  The	binary	formats	used	to	
store	mulKbyte	integers	
and	floaKng-point	values	
differ	among	machine	
architectures	ß	big/limle	
endian		
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float	data[10];	
if	(fwrite(&data[2],	sizeof(float),	4,	fp)	!=	4)	
	 	err_sys("fwrite	error");		

struct	{ 	short 	count;	
	long	total;	
	char	name[NAMESIZE];	

}	item;	
if	(fwrite(&item,	sizeof(item),	1,	fp)	!=	1)	

	err_sys("fwrite	error");	
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PosiKoning	a	Stream	

•  Similar	to	seek	…	
–  int	fseek(FILE	*fp,	long	offset,	int	whence);	
–  long	bell(FILE	*fp);	
– void	rewind(FILE	*fp);	

•  Similar	funcKons	with	offset	off_t	ß	why?	
– off_t	bello(…)	and	int	fseeko	(....)			

•  ISO	C	standard:	fgetpos(...)	and	fsetpos(...),	
bemer	for	porKng	to	non-UNIX		systems	
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Temporary	Files	
•  Create	a	temporary	file	
•  Synopsis	

–  char	*tmpnam(char	*ptr);	
–  Returns:	pointer	to	unique	pathname	
–  FILE	*tmpfile(void);	
–  Returns:	file	pointer	if	OK,	NULL	on	error	

•  It	is	not	recommend	to	use	tmpnam	
–  It	uses	a	staKc	buffer	to	store	generated	filename	ß	something	may	

happen	between	calling	tmpnam	and	open	file…	
–  As	the	generated	name	are	/tmp/fileXXXXXX,	it	might	be	guessed	
–  SoluKons	

•  Use	tmpfile	or	mkstemp	instead	
•  Open	the	temporary	file	using	open(2)	with	the	O_EXCL	flag	

54	CS5432	Advanced	UNIX	Programming	



What	is	Wrong	with	the	Example?	
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Reading	Assignments	

•  Chapter	3:	File	I/O	
•  Chapter	5:	Standard	I/O	Library	
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QUESTION?	
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Assignment	#2	(5%)	
•  Write	your	own	dup2	funcKon	that	behaves	the	same	way	as	the	

dup2	funcKon	described	in	SecKon	3.12,	without	calling	the	fcntl	
funcKon.	Be	sure	to	handle	errors	correctly.	

•  Hint:	If	fcntl	cannot	be	invoked,	you	will	have	to	use	dup.	Then	you	
have	no	control	over	which	file	descriptor	will	be	used	by	the	dup	
funcKon	call.	Try	to	design	a	workaround	of	this.		

•  Submission:	
–  (1%)	Submit	you	pseudocode	in	plan-text,	with	the	file	name:	

hw02_[YourStudentID].txt	
–  (3%)	Submit	your	code	with	the	file	name:	hw02_[YourStudentID].c	.	

You	get	3	points	once	your	code	can	handle	normal	test	cases	
prepared	by	TA.				

–  (1%)	You	get	one	more	point	if	you	handle	all	the	errors	correctly.		
•  Due	date:	Oct	4th	
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