
Chapter	7
Process	Environment

CS5432	Advanced	UNIX	Programming 1

Cheng-Hsin Hsu
National	Tsing	Hua	University

Department	of	Computer	Science

Parts	of	the	course	materials	are	courtesy	of	Prof.	Chun-Ying	Huang

Outline

• Process	start	and	termination
• Environment	variables
• Memory	layout
• Shared	libraries
• Memory	allocation
• setjmp and	longjmp
• Process	resource	limits

Process	Environment 2

Process	Start

• The	main	function
• Synopsis
– int main(int argc, char *argv[]);
– int main(int argc, char *argv[], char
*envp[]);

Process	Environment 3

Process	Termination
• Normal	process	termination	in	five	ways

– Return	from	main
– Calling	exit
– Calling	_exit	or	_Exit
– Return	of	the	last	thread	from	its	start	routine
– Calling	pthread_exit	from	the	last	thread	

• Abnormal	process	termination	in	three	ways
– Calling	abort
– Receipt	of	a	signal
– Response	of	the	last	thread	to	a	cancellation	request	

• Execution	of	a	main	function	looks	like
– exit(main(argc,	argv));

Process	Environment 4

atexit	and	exit	Functions
• Manual	cleanups	on	exit
– int atexit(void (*function)(void));
– Register	up	to	32	customized	functions	(textbook)

• Linux	has	extended	this	restrictions
• Exit	functions
– exit

• Call	atexit registered	functions
• Performed	a	clean	shutdown	of	the	standard	I/O	library
• fclose()	all	streams,	remove	tmpfile()	

– _exit	and	_Exit
• Terminate	immediately

Process	Environment 5

Start	and	Termination	of	a	C	Program

Process	Environment 6

Environment	Variables
• The	environment	variables

– Usually	in	the	form	of:	name=value (no	spaces	around	=)
– Relevant	commands:	env,	export	(bash)
– Use	$	to	read	a	specific	environment	variable	in	a	shell

• List	of	environment	variable	functions

Function ISO	C POSIX.1 FreeBSD
8.0

Linux
3.2.0

Mac	OS	X
10.6.8 Solaris	10

getenv • • • • • •
putenv XSI • • • •
setenv • • • •

unsetenv • • • •
clearenv •

Process	Environment 7

Environment	List
• Access	environment	variables	directly

– int main(int argc, char *argv[], char *envp[]);
– extern char **environ;

Process	Environment 8

Environment	Functions

• Prototypes	of	functions	to	manipulate	
environment	variables

Process	Environment 9

#include <stdlib.h>

char *getenv(const char *name);
int putenv(char *string);

int setenv(const char *name, const char *value, int overwrite);
int unsetenv(const char *name);
int clearenv(void);

Environment	List	Operations
• Delete	an	entry

– This	is	simple,	just	free	a	string	and	move	all	subsequent	pointers	
down	one	

• Modify	an	entry
– If	new-size ≥ old-size,	just	overwrite	the	old	one
– If	new-size	>	old-size,	allocate	a	new	space	the	new	variable	and	

make	the	pointer	point	to	the	new	location

• Add	an	entry
– Add	for	the	1st time,	allocate	a	new	space	for	the	entire	list
– Add	for	non-1st time,	reallocate	a	larger	space	for	the	entire	list

Process	Environment 10

Common	Environment	Variables	(1/3)

Process	Environment 11

Variable POSIX.1 FreeBSD	
8.0

Linux	
3.2.0

Mac	OS	
X	10.6.8

Solaris	
10 Description

COLUMNS • • • • • Terminal	width

DATEMASK XSI • • • getdate(3)	template	file	
pathname

HOME • • • • • Home	directory

LANG • • • • • Name	of	locale

LC_ALL • • • • • Name	of	locale

LC_COLLATE • • • • • Name	of	locale	for	
collation

LC_CTYPE • • • • • Name	of	locale	for	
character classification

LC_MESSAGES • • • • • Name	of	locale	for	
messages

Common	Environment	Variables	(2/3)

Process	Environment 12

Variable POSIX.1 FreeBSD	
8.0

Linux	
3.2.0

Mac	OS	
X	10.6.8

Solaris	
10 Description

LC_MONETARY • • • • • Name	of	locale	for	
monetary editing

LC_NUMERIC • • • • • Name	of	locale	for	numeric	
editing

LC_TIME • • • • • Name	of	locale	for	
date/time formatting

LINES • • • • • Terminal	height
LOGNAME • • • • • Login	name

MSGVERB XSI • • • • fmtmsg(3) message	
components	to	process

NLSPATH • • • • • Sequence	of	templates	for	
message catalogs

Common	Environment	Variables	(3/3)

Process	Environment 13

Variable POSIX.1 FreeBSD	
8.0

Linux	
3.2.0

Mac	OS	
X	10.6.8

Solaris	
10 Description

PATH • • • • • List	of	path	prefixes	to	
search	for	executable	file

PWD • • • • • Absolute	pathname	of	
current	working	directory

SHELL • • • • • Name	of	user’s	preferred	
shell

TERM • • • • • Terminal	type

TMPDIR • • • • • Pathname	of	directory	for	
creating	temporary	files

TZ • • • • • Time	zone	information

Memory	Layout	of	a	Program	
• Text	segment

– Machine	instructions

• Initialized	data	segment
– int maxcount =	100;

• Uninitialized	data	segment	(bss)
– long	sum[1000];

• Stack
– Local	variables,	function	call	states

• Heap
– Dynamic	allocated	memory

Process	Environment 14

Read	Sizes	of	an	Executable	Binary

• The	size	(1)	command

Process	Environment 15

$ size /usr/bin/gcc /bin/sh

text data bss dec hex filename
203913 2152 2248 208313 32db9 /usr/bin/gcc
704028 19268 19736 743032 b5678 /bin/sh

Shared	Libraries

• Most	UNIX	systems	today	support	shared	libraries	
• Shared	libraries	remove	the	common	library	routines	

from	the	executable	file
• Maintain	a	single	copy	of	the	library	routine	somewhere	

in	memory	that	all	processes	reference	
– Reduce	the	size	and	memory	requirement	of	each	executable	

file
– But	It	may	add	some	runtime	overhead	

• Another	advantage	of	shared	libraries	
– Library	functions	can	be	replaced	with	new	versions	without	

having	to	relink	every	program	that	uses	the	library
– But	it	might	also	be	a	security	flaw

Process	Environment 16

Compile	Static	and	Dynamic	Program

• A	simple	program	that	just	print	“Hello,	World!”

Process	Environment 17

$ gcc h1.c -o h1
$ gcc h2.c -o h2 -static
$ ls -la h1 h2
-rwxrwxr-x 1 bear bear 9564 Mar 13 11:48 h1
-rwxrwxr-x 1 bear bear 878192 Mar 13 11:48 h2
$ size h1 h2

text data bss dec hex filename
896 264 8 1168 490 h1

499650 1928 6948 508526 7c26e h2

Library	Injection

• Functions	referenced	to	shared	libraries	can	be	
overridden
– The	LD_PRELOAD	environment	variable
– Usage:

LD_PRELOAD=/path/to/the/injected-shared-object	{program}

• Library	injection	does	not	work	with	suid/sgid
executables

Process	Environment 18

Library	Injection	Example
• Suppose	we	are	going	to	hijack	the	getuid()	function

– This	is	commonly	used	in	tools	like	fake-root

• The	original	program	(getuid.c)

• The	injected	library	(inject1.c)

Process	Environment 19

int main() {
printf("UID = %d\n", getuid());
return 0;

}

#include <stdio.h>
#include <sys/types.h>

uid_t getuid(void) {
fprintf(stderr, "injected getuid, always return 0\n");
return 0;

}

Library	Injection	Example	(Cont’d)
• Compile	the	programs	and	the	libraries

– The	first	command	produces	the	getuid program
– The	second	commands	generates	the	inject1.so	(shared)	library

• Run	the	example

Process	Environment 20

$ gcc -o getuid -Wall -g getuid.c
$ gcc -o inject1.so -shared -fPIC inject1.c -ldl

$./getuid # no injection
UID = 1000
$ LD_PRELOAD=./inject1.so ./getuid # injected
injected getuid, always return 0
UID = 0

More	on	Library	Injection
• But	we	still	want	the	original	function	to	work	properly
• We	have	to	locate	the	original	function

• You	may	have	to	link	with	-ldl option

Process	Environment 21

#include <dlfcn.h>

void *dlopen(const char *filename, int flag);
char *dlerror(void);
void *dlsym(void *handle, const char *symbol);
int dlclose(void *handle);

Revised	Library	Injection	Example
• We	would	like	to	know	the	real	UID	internally	(inject2.c)

Process	Environment 22

#include <dlfcn.h>
#include <stdio.h>
#include <sys/types.h>

static uid_t (*old_getuid)(void) = NULL; /* function pointer */

uid_t getuid(void) {
if(old_getuid == NULL) {

void *handle = dlopen("libc.so.6", RTLD_LAZY);
if(handle != NULL)

old_getuid = dlsym(handle, "getuid");
}
fprintf(stderr, "injected getuid, always return 0\n");
if(old_getuid != NULL)

fprintf(stderr, "real uid = %d\n", old_getuid());
return 0;

}

Revised	Library	Injection	Example	(Cont’d)

• Compile	the	programs	and	the	libraries	(again)

– The	first	command	produces	the	getuid program
– The	second	commands	generates	the	inject2.so	(shared)	library

• Run	the	example

Process	Environment 23

$ gcc -o getuid -Wall -g getuid.c
$ gcc -o inject2.so -shared -fPIC inject2.c -ldl

$./getuid # no injection
UID = 1000
$ LD_PRELOAD=./inject2.so ./getuid # injected
injected getuid, always return 0
real uid = 1000
UID = 0

Determine	Library	Injection	Possibility

• No	SUID/SGID	enabled
• Not	a	statically	linked	binary
• Examples	of	the	dynamic/static	linked	hello-world	example

– The	file command

– The	ldd command

Process	Environment 24

$ ldd h1 h2
h1:

linux-vdso.so.1 => (0x00007ffe7d3d5000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f1bc2150000)
/lib64/ld-linux-x86-64.so.2 (0x00007f1bc2515000)

h2:
not a dynamic executable

$ file h1 h2
h1: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared
libs), for GNU/Linux 2.6.24, BuildID[sha1]=e32f08cfbdda94d57273829c2bfd535d8fbe626d, not
stripped
h2: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), statically linked, for
GNU/Linux 2.6.24, BuildID[sha1]=2748d80822e76d183d0ef5633c0b784527727c7a, not stripped

Determine	Library	Injection	Possibility	
(Cont’d)

• Use	symbols	from	a	shared	library
• The	nm	command
• Example:	static	VS	dynamic	linked	symbols

• Symbols	can	be	stripped	using	the	strip command

Process	Environment 25

$ gcc -o getuid -Wall -g getuid.c # dynamically linked
$ gcc -o getuid_s -Wall -g getuid.c -static # statically linked
$ nm getuid | grep getuid

U getuid@@GLIBC_2.2.5 # getuid is unknown
$ nm getuid_s | grep getuid
0000000000433590 W getuid # getuid is known (but weak)
0000000000433590 T __getuid # the getuid implementation

Memory	Allocation

• ISO	C	memory	allocation	functions
• void	*malloc(size_t size);

– Allocates	a	specified	number	of	bytes	of	memory	
– The	initial	value	of	the	memory	is	indeterminate	

• void	*calloc(size_t nobj,	size_t size);	
– Allocates	space	for	a	specified	number	of	objects	of	a	specified	

size
– The	space	is	initialized	to	all	0	bits

• void	*realloc(void	*ptr,	size_t newsize);	
– Increases	or	decreases	the	size	of	a	previously	allocated	area	
– It	may	involve	moving	the	previously	allocated	area	somewhere	

else,	to	provide	the	additional	room	at	the	end	
– The	initial	value	of	increased	memory	is	indeterminate	

Process	Environment 26

Memory	Allocation	(Cont’d)
• Allocated	memory	can	be	released	by	free()
• The	allocation	routines	are	usually	implemented	
with	the	sbrk(2)	system	call	

• This	system	call	expands	(or	contracts)	the	heap	
of	the	process	
– However,	most	versions	of	malloc	and	free	never	
decrease	their	memory	size

– The	space	that	we	free	is	available	for	a	later	
allocation

– The	freed	space	is	usually	kept	in	the	malloc	pool,	not	
returned	to	the	kernel

Process	Environment 27

The	alloca Function

• A	special	memory	allocation	function	– alloca

• alloca()	allocate	memories	in	stack	frames of	the	current	
function	call

• So	you	don’t	have	to	free()	the	memory	– it	is	released	
automatically	after	the	execution	of	the	current	function	
returns

• May	be	not	supported	by	your	system,	but	modern	UNIXes
supports	the	function	(Linux,	FreeBSD,	Mac	OS	X,	Solaris)

• Pros:	might	be	faster	(than	malloc),	no	need	to	free,	easier	to	
work	with	setjmp/longjmp

• Cons:	Portability

Process	Environment 28

#include <alloca.h>
void *alloca(size_t size);

setjmp	and	longjmp	Function

• The	reserved	keyword	"goto"	can	be	used	only	
in	the	same	function

• We	cannot	goto a	label	that	is	in	another	
function	

• Instead,	we	must	use	the	setjmp and	longjmp
functions	to	perform	this	type	of	branching	

Process	Environment 29

Typical	Program	Skeleton	for	Command	
Processing

• What	if	we	encounter	an	error	in	
cmd_add and	would	like	to	jump	back	to	
the	main	function	for	processing	the	
next	line?

Process	Environment 30

The	Solution	for	Jumping	Across	
Functions

• Set	the	jump	back	position
– int setjmp(jmp_buf env);	
– env is	usually	a	global	variable	– has	to	be	accessed	from	both	the	

setjmp side	and	the	longjmp side
– Returns:	0	if	called	directly,	or	nonzero	if	returning	from	a	call	to	

longjmp

• Jump	back
– void	longjmp(jmp_buf env,	int val);	

• The	'val'	will	be	returned	from	setjmp
• If	val is	0,	it	will	be	replaced	by	1

Process	Environment 31

Using	setjmp	and	longjmp

• Stack	after	jumped	back

Process	Environment 32

Restoration	of	Variables	(1/4)

• Type	of	variables
– Automatic,	e.g.,	[auto]	int autoVal;,	the	default
– Register,	e.g.,	register int regVal;,	store	in	register	if	possible
– Volatile,	e.g.,	volatile int volVal;,	store	in	memory

• What	are	the	values	of	variables	after	jumped	back?
– It	depends
– Most	implementations	do	not	try	to	roll	back	these	automatic	

variables	and	register	variables
– The	standards	say	only	that	their	values	are	indeterminate	
– If	you	have	an	automatic	variable	that	you	do	not	want	to	be	

rolled	back,	define	it	with	the	volatile	attribute	
– Variables	that	are	declared	global	or	static	are	left	alone	when	

longjmp is	executed	
– In	short:	variables	in	register	– restored;	variables	in	memory	–

kept	
Process	Environment 33

Process	Environment 34

Restoration	of	Variables	(2/4)

Restoration	of	Variables	(3/4)
• Rules	for	variable	restoration

– Variables	stored	in	memory	will	have	values	as	of	the	time	of	calling	
longjmp	

– Variables	in	the	CPU	and	floating-point	registers	are	restored	to	their	
values	when	setjmp	was	called	

• Hence,
– auto	variables	may	be	indeterminate,	it	depends	on	compiler	

implementations
– register	variables	are	restored	to	the	value	of	“before	calling	setjmp”
– volatile	variable	are	restored	to	the	value	of	“before	calling	longjmp”

Process	Environment 35

Restoration	of	Variables	(4/4)
• Set	1,2,3,4,5	→	setjmp →	Set	95,96,97,98,99	→	longjmp →	?

– No	optimization:	gcc places	everything	in	memory
– Full	optimization:	auto/register	variables	are	placed	in	registers

Process	Environment 36

$ gcc fig7.13-testjmp.c -I../include -o t1 compile without any optimization
$ gcc fig7.13-testjmp.c -I../include -o t2 –O compile with full optimization
$./t1
in f1():
globval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99
after longjmp:
globval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99
$./t2
in f1():
globval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99
after longjmp:
globval = 95, autoval = 2, regival = 3, volaval = 98, statval = 99

Process	Resource	Limits
• Every	process	has	a	set	of	resource	limits
• Resource	limits	are	usually	initialized	by	a	parent	process	and	

inherited	by	its	child	processes
• The	getrlimit and	setrlimit functions

• The	rlimit structure

Process	Environment 37

#include <sys/time.h>
#include <sys/resource.h>
int getrlimit(int resource, struct rlimit *rlim);
int setrlimit(int resource, const struct rlimit *rlim);

struct rlimit {
rlim_t rlim_cur; /* Soft limit */
rlim_t rlim_max; /* Hard limit (ceiling for rlim_cur) */

};

Partial	List	of	Process	Resources

Process	Environment 38

Limit XSI FreeBSD	
8.0 Linux	3.2.0 Mac	OS	X	

10.6.8 Solaris	10

RLIMIT_AS • • • •

RLIMIT_CORE • • • • •

RLIMIT_CPU • • • • •

RLIMIT_DATA • • • • •

RLIMIT_FSIZE • • • • •

RLIMIT_MEMLOCK • • •

RLIMIT_NOFILE • • • • •

RLIMIT_NPROC • • •

RLIMIT_RSS • • •

RLIMIT_SBSIZE •

RLIMIT_STACK • • • • •

RLIMIT_VMEM •

Example	to	Dump	Resource	Limits

• See	code	fig7.16-getrlimit.c

Process	Environment 39

$./fig7.16-getrlimit
RLIMIT_AS (infinite) (infinite)
RLIMIT_CORE 1024000000 (infinite)
RLIMIT_CPU (infinite) (infinite)
RLIMIT_DATA (infinite) (infinite)
RLIMIT_FSIZE (infinite) (infinite)
RLIMIT_LOCKS (infinite) (infinite)
RLIMIT_MEMLOCK 65536 65536
RLIMIT_NOFILE 1024 4096
RLIMIT_NPROC 96120 96120
RLIMIT_RSS (infinite) (infinite)
RLIMIT_STACK 8388608 (infinite)

Example	to	Dump	Resource	Limits

Process	Environment 40

Limits Description
RLIMIT_CORE The	maximum	size	in	bytes	of	a	core	file.	A	limit	of	0	

prevents	the	creation	of	a	core	file.
RLIMIT_MEMLOCK The	maximum	amount	of	memory	in	bytes	that	a	process	

can	lock	into	memory	using	mlock(2).
RLIMIT_NOFILE The	maximum	number	of	open	files	per	process.	
RLIMIT_NPROC The	maximum	number	of	child	processes	per	real	user	

ID.	
RLIMIT_STACK The	maximum	size	in	bytes	of	the	stack.

Assignment	#5	(5%)
• Different	from	the	prior	assignments,	this	is	a	paper-based	

one.	Please	write	the	10	exercise	questions	(each	worth	0.5	
point)	of	Chapter	7	of	the	textbook	(third	edition)

• You	are	encouraged	to	discuss.	However,	copying	others’	
solutions	is	prohibited	and	you	may	suffer	from	penalty	

• Due	date:	Nov.	14th,	please	turn	in	when	we	have	the	class	on	
Monday

• No	lab/demo	session	on	Nov.	15th

CS5432	Advanced	UNIX	Programming 41

CS5432	Advanced	UNIX	Programming 42

