
Chapter	11	
Threads	

CS5432	Advanced	UNIX	Programming	 1	

Cheng-Hsin	Hsu	
Na#onal	Tsing	Hua	University	

Department	of	Computer	Science	
	

Parts	of	the	course	materials	are	courtesy	of	Prof.	Chun-Ying	Huang	

Outline	

•  Overview	and	introducIon	
•  Thread	creaIon	
•  Thread	terminaIon	
•  Thread	synchronizaIon	

Threads	 2	

IntroducIon	
•  We	have	introduced	the	relaIonships	between	processes	

–  There	is	only	a	limited	amount	shares	can	occur	between	related	
processes	

•  Here	we	are	going	to	introduce	threads	
–  It	is	able	to	perform	mulIple	tasks	within	a	single	process	
–  All	threads	within	a	single	process	have	access	to	the	same	process	

components,	e.g,.	file	descriptors	and	memory	

•  If	a	single	resource	is	shared	among	mulIple	threads	
–  We	need	synchronizaIon	mechanisms	to	prevent	mulIple	threads	

from	viewing	inconsistencies	in	their	shared	resources		

Threads	 3	

Thread	Concepts	

•  A	typical	UNIX	process	can	be	thought	of	as	having	a	single	
thread	of	control		
–  Each	process	is	doing	only	one	thing	at	a	Ime		

•  With	mulIple	threads	of	control	
–  We	can	design	our	programs	to	do	more	than	one	thing	at	a	Ime	

within	a	single	process		
–  Each	thread	handles	a	task		

•  Benefits	of	using	mulIple	threads	
–  Simplify	code	that	deals	with	asynchronous	events		
–  Shares	the	same	memory	spaces	and	file	descriptors	
–  Problems	can	be	parIIoned	to	improve	overall	program	

throughput	
–  InteracIve	programs	can	realize	improved	response	Ime	

Threads	 4	

Thread	Concepts	(Cont’d)	

•  MulIthread	programming	can	be	realized	also	on	a	
single	processor	
–  The	performance	sIll	gets	improved	as	there	is	always	I/O	

operaIons	that	block	the	execuIon	of	a	process	
–  However,	if	you	have	a	mulIprocessor	system,	threaded	

program	may	run	faster	
•  A	thread	consists	of	the	informaIon	necessary	to	

represent	an	execuIon	context	within	a	process		
–  Thread	ID	
–  Register	values,	stack	content,	a	signal	mask,	an	errno	variable	
–  Scheduling	priority	and	policy,	and	
–  Thread	specific	data	

Threads	 5	

The	UNIX	Thread	Standard	
•  Defined	by	POSIX	

–  Portable	OperaIng	System	Interface	for	UNIX	
–  POSIX.1-2001		
–  Also	known	as	“pthreads”	or	“POSIX	threads”	

•  Build	programs	with	thread	supports	
–  Your	program	has	to	include	<pthread.h>	
–  To	compile	a	C/C++	program	with	thread	support,	you	have	to	add	

“-pthread”	or	“-lpthread”	argument	when	compiling	with	gcc	

Threads	 6	

Linux	ImplementaIon	of	POSIX	
Threads	

•  Threads	are	implemented	via	the	clone	system	call	
–  Basically,	they	are	processes	sharing	more	informaIon	

•  Two	flavors:	LinuxThreads	and	NPTL	
•  LinuxThreads:	The	original	thread	implementaIon	
•  NPTL:	NaIve	POSIX	Thread	Library	

–  Beder	conformance	to	POSIX.1	
•  For	example,	POSIX.1	requires	threads	of	a	process	obtaining	the	same	

PID	value	when	calling	getpid(),	but	LinuxThreads	does	not	follow	it	
–  Beder	performance	
–  Require	supports	from	the	C	library	and	the	kernel	

•  Both	are	1:1	thread	model	
•  That	is,	each	thread	maps	to	a	kernel	scheduling	enIty	

Threads	 7	

Thread	IdenIficaIon		

•  Every	thread	has	a	thread	ID		
–  It	may	be	not	unique	in	the	system	
–  The	thread	ID	has	significance	only	within	the	context	of	the	

process	to	which	it	belongs		
•  The	pthread_t	data	type	

–  Similar	to	pid_t,	pthread_t	is	used	to	idenIfy	a	thread	
–  It	can	be	a	structure	(not	forced	to	be	an	integer)	

•  Test	the	equivalence	of	thread	IDs	
–  int	pthread_equal(pthread_t	Id1,	pthread_t	Id2);		
–  Returns:	nonzero	if	equal,	zero	otherwise	

•  Get	the	current	thread	ID	
–  pthread_t	pthread_self(void);		

Threads	 8	

Thread	ID:	A	Job	Queue	Example	
•  A	master	thread	assign	jobs	to	worker	threads	by	their	IDs	
•  A	worker	thread	only	removes	the	job	tagged	with	its	own	

thread	ID	
•  This	can	be	done	by	examining	the	thread	ID	using	the	

pthread_equal	funcIon	

Threads	 9	

Thread	CreaIon	
•  With	pthreads,	when	a	program	runs,	it	also	starts	out	as	a	

single	process	with	a	single	thread	of	control		
•  Create	addiIonal	threads	

–  int	pthread_create(pthread_t	*restrict	thread,	
		const	pthread_adr_t	*restrict	adr,	
		void	*(*start_rouIne)(void*),	void	*restrict	arg);	
•  “thread”	should	be	the	address	of	a	previous	declared	pthread_t	
variable	

•  “adr”	is	used	to	customize	thread	adributes	
•  The	newly	created	thread	starts	running	the	“start_rouIne”	funcIon	
•  The	“arg”	is	then	passed	to	the	“start_rouIne”	funcIon	

–  Returns:	0	if	OK,	error	number	on	failure		

Threads	 10	

Thread	CreaIon	(Cont’d)	

•  When	a	thread	is	created	…	
–  There	is	no	guarantee	which	thread	runs	first		

•  The	newly	created	thread	or	the	calling	thread?	
–  The	newly	created	thread	

•  Has	access	to	the	process	address	space,	and	
•  Inherit	floaIng-point	environment	and	signal	mask	from	the	
calling	process	

•  pthread	funcIons	usually	return	an	error	code	when	
they	fail		
–  They	do	not	use	the	errno	variable	
–  It	is	not	recommended	to	use	global	variables	for	status	checks	
–  However,	the	per	thread	copy	of	errno	is	sIll	provided	for	

compaIbility		

Threads	 11	

Thread	CreaIon,	an	Example	

pthread_t	ntid;	
void	printids(const	char	*s)	{	

	pid_t	pid	=	getpid();	
	pthread_t	tid	=	pthread_self();	
	printf("%s	pid	%u	tid	%u	(0x%x)\n",	s,	(unsigned	int)pid,	
	 	(unsigned	int)	tid,	(unsigned	int)	tid);	

}	
void	*	thr_fn(void	*arg)	{	

	printids("new	thread:	");		return((void	*)0);	
}	
int	main(void)	{	

	int	err	=	pthread_create(&ntid,	NULL,	thr_fn,	NULL);	
	if	(err	!=	0)	
	 	err_quit("can't	create	thread:	%s\n",	strerror(err));	
	printids("main	thread:");	
	sleep(1);	
	exit(0);	

}	

Threads	 12	

Thread	CreaIon,	an	Example	(Cont’d)	

•  The	result	can	be	different	on	vaious	plauorms		
–  The	pthread_t	may	be	not	an	integer	
–  The	getpid()	funcIon	may	return	different	values	for	the	two	thread	

(although	it	is	expected	to	return	the	same	value)	

Threads	 13	

$./fig11.2-threadid
new thread: pid 3207 tid 3084950416 (0xb7e09b90)
main thread: pid 3207 tid 3084953264 (0xb7e0a6b0)

Thread	TerminaIon	
•  Terminate	the	enIre	process	

–  If	any	thread	within	a	process	calls	exit,	_Exit,	or	_exit	
–  If	received	a	signal	with	the	default	acIon	of	terminaIng	the	process	

•  Terminate	a	single	thread	
–  Return	from	the	start	rouIne.	

•  The	return	value	is	the	thread's	exit	code	
–  Cancelled	by	another	thread	in	the	same	process		
–  The	thread	calls	pthread_exit	

Threads	 14	

Thread	TerminaIon	Status	
•  The	exit	status	of	a	process	can	be	retrieved	using	wait	funcIons	

–	wait,	waitpid,	…,	etc	

•  The	exit	status	of	a	thread	can	also	be	retrieved	
•  The	pthread_join	funcIon	

–  int	pthread_join(pthread_t	thread,	void	**value_ptr);	
–  Returns:	0	if	OK,	error	number	on	failure		
–  This	funcIon	suspends	the	calling	thread	

•  Unless	the	target	thread	has	already	terminated	
–  The	retrieved	exit	status	is	stored	in	value_ptr,	if	it	is	not	NULL	
–  The	target	thread	is	then	placed	in	a	“detached”	state	

•  The	storage	for	that	thread	is	released	

Threads	 15	

Thread	TerminaIon	Status	(Cont’d)	
•  The	storage	of	a	thread	can	be	released	immediately	right	on	

its	terminaIon	
•  The	pthread_detach	funcIon	

–  Set	the	state	of	a	thread	to	be	“detached”	
–  int	pthread_detach(pthread_t	thread);	
–  Returns:	0	if	OK,	error	number	on	failure		

•  A	detached	thread	can	not	be	joined	
–  A	call	to	pthread_join	for	a	detached	thread	will	return	EINVL	

Threads	 16	

Thread	TerminaIon,	an	Example	

void	*	tfn1(void	*a)	{	printf("thread	1	returning\n");	return((void	*)1);	}	
void	*	tfn2(void	*a)	{	printf("thread	2	exiting\n");	pthread_exit((void	*)2);	}	
int	main(void)	{	

	int		err;	
	pthread_t	tid1,	tid2;	
	void	*tret;	
	err	=	pthread_create(&tid1,	NULL,	tfn1,	NULL);	
	if	(err	!=	0)	err_quit("can't	create	thread	1:	%s\n",	strerror(err));	
	err	=	pthread_create(&tid2,	NULL,	tfn2,	NULL);	
	if	(err	!=	0)	err_quit("can't	create	thread	2:	%s\n",	strerror(err));	
	err	=	pthread_join(tid1,	&tret);	
	if	(err	!=	0)	err_quit("can't	join	with	thread	1:	%s\n",	strerror(err));	
	printf("thread	1	exit	code	%d\n",	(int)tret);	
	err	=	pthread_join(tid2,	&tret);	
	if	(err	!=	0)	err_quit("can't	join	with	thread	2:	%s\n",	strerror(err));	
	printf("thread	2	exit	code	%d\n",	(int)tret);	
	exit(0);	

}	

Threads	 17	

$./fig11.3-exitstatus	
thread	1	returning	
thread	2	exiting	
thread	1	exit	code	1	
thread	2	exit	code	2	

void	*	and	pthread	FuncIons	
•  In	pthread_create	and	pthread_exit	funcIon,	we	pass	

arguments	using	the	"void	*"	type	
–  The	typeless	pointer		

•  The	pointer	can	be	used	to	pass	more	than	a	single	value	
–  Values	can	be	store	in	a	data	structure	
–  The	pointer	of	the	data	structure	is	then	passed	to	pthread_create	or	

pthread_exit	

•  However,	the	data	structure	should	not	be	placed	on	the	
stack	
–  When	a	thread	is	terminated,	the	memory	of	its	stack	is	released		
–  It	might	be	reused	by	other	threads	

Threads	 18	

Cancelling	a	Thread	
•  The	pthread_cancel	funcIon	

–  int	pthread_cancel(pthread_t	Id);		
–  Returns:	0	if	OK,	error	number	on	failure		

•  It	just	like	the	thread	#d	calls	
pthread_exit(PTHREAD_CANCELED)	

•  The	thread	Id	can	select	to	ignore	or	control	how	it	is	
canceled		

•  pthread_cancel	does	not	wait	for	the	thread	to	terminate	
–  It	simply	makes	the	request	

Threads	 19	

Cleanup	FuncIons	
•  Recall	the	atexit	funcIon	

–  Register	funcIons	that	execute	when	a	process	terminates	
•  Similar	works	can	be	done	for	threads	

–  void	pthread_cleanup_push(void	(*rtn)(void	*),		void	*arg);		
–  void	pthread_cleanup_pop(int	execute);		

•  The	registered	rouInes	is	executed	when	…	
–  Making	a	call	to	pthread_exit	
–  Responding	to	a	cancellaIon	request	
–  Making	a	call	to	pthread_cleanup_pop	with	a	nonzero	execute	

argument	
•  If	the	argument	is	zero,	it	just	remove	the	rouIne	on	stack	top	

Threads	 20	

Comparison	of	Process	and	Thread	
PrimiIves		

Process	Primi1ve	 Thread	Primi1ve	 Descrip1on	

fork	 pthread_create	 create	a	new	flow	of	control	

exit	 pthread_exit	 exit	from	an	exisIng	flow	of	control	

waitpid	 pthread_join	 get	exit	status	from	flow	of	control	

atexit	 pthread_cleanup_push	 register	funcIon	to	be	called	at	exit	
from	flow	of	control	

getpid	 pthread_self	 get	ID	for	flow	of	control	

abort	 pthread_cancel	
	

request	abnormal	terminaIon	of	flow	
of	control	

Threads	 21	

Thread	SynchronizaIon	

•  Threads	of	a	process	share	the	same	memory	
•  Each	thread	must	see	a	consistent	view	of	data		
•  The	data	is	always	consistent	if	…	
–  Each	thread	uses	variables	that	other	threads	do	not	
read	or	modify	

–  Variables	are	read-only	
•  However,	if	a	thread	modifies	a	shared	data	
– We	need	to	synchronize	the	threads	to	ensure	that	
they	do	not	use	an	invalid	value		

Threads	 22	

Unsafe	Access	of	Shared	Variables,	
Example	#1	

•  Two	threads,	one	for	
updaIng	and	one	for	
reading	
–  Suppose	a	write	operaIon	

needs	two	cycles	
–  The	read	operaIon	occurs	

during	the	write	operaIons	

Threads	 23	

Unsafe	Access	of	Shared	Variables,	
Example	#2	

•  Two	threads,	both	
increasing	a	variable	
–  Read	the	memory	

locaIon	into	a	register	
–  Increment	the	value	in	

the	register		
–  Write	the	new	value	

back	to	the	memory	
locaIon		

Threads	 24	

Synchronized	Memory	Access	

•  To	solve	the	previous	problem,	
we	have	to	use	a	lock	that	allows	
only	one	thread	to	access	the	
variable	at	a	Ime		

•  If	thread	B	wants	to	read	the	
variable,	it	acquires	a	lock		

•  If	thread	A	updates	the	variable,	
it	acquires	the	same	lock		
–  Thread	B	will	be	unable	to	read	

the	variable	unIl	thread	A	releases	
the	lock		

Threads	 25	

Mutexes	

•  Mutual	exclusives	
•  A	mutex	is	basically	a	lock		

–  We	set	(lock)	it	before	accessing	a	shared	resource		
–  It	is	released	(unlocked)	when	we're	done		

•  When	a	mutex	is	set	…	
–  Any	other	thread	that	tries	to	set	it	will	be	blocked	unIl	the	

lock	holder	releases	it		
–  If	more	than	one	thread	is	blocked	when	a	mutex	is	unlocked		

•  All	threads	blocked	on	the	lock	will	be	made	runnable		
•  The	first	one	to	run	will	be	able	to	set	the	lock		
•  The	others	will	see	that	the	mutex	is	sIll	locked	and	go	back	to	
wait	

–  Only	one	thread	will	proceed	at	a	Ime		

Threads	 26	

pthread	Mutexes	
•  Data	type:	pthread_mutex_t		
•  IniIalize	and	destroy	

–  int	pthread_mutex_init(pthread_mutex_t	*restrict	mutex,	
		const	pthread_mutexadr_t	*restrict	adr);	

–  int	pthread_mutex_destroy(pthread_mutex_t	*mutex);	
–  Returns:	0	if	OK,	error	number	on	failure		

•  AlternaIvely	
–  pthread_mutex_t	mutex	=	PTHREAD_MUTEX_INITIALIZER;	

Threads	 27	

pthread	Mutexes	(Cont’d)	
•  Lock	and	unlock	

–  int	pthread_mutex_lock(pthread_mutex_t	*mutex);	
–  int	pthread_mutex_trylock(pthread_mutex_t	*mutex);	
–  int	pthread_mutex_unlock(pthread_mutex_t	*mutex);	
–  Returns:	0	if	OK,	error	number	on	failure		

Threads	 28	

A	Mutex	Example	–	
Protect	a	Data	Structure	

struct foo {
 int f_count;
 pthread_mutex_t f_lock;
 /* ... more stuff here ... */

};

struct foo * foo_alloc(void) { /* allocate the object */

 struct foo *fp;
 if ((fp = malloc(sizeof(struct foo))) != NULL) {
 fp->f_count = 1;
 if (pthread_mutex_init(&fp->f_lock, NULL) != 0) {
 free(fp);
 return(NULL);
 }
 /* ... continue initialization ... */
 }
 return(fp);

}

Threads	 29	

A	Mutex	Example	–	
Protect	a	Data	Structure	(Cont’d)	
void foo_hold(struct foo *fp) { /* add a reference to the object */

 pthread_mutex_lock(&fp->f_lock);
 fp->f_count++;
 pthread_mutex_unlock(&fp->f_lock);

}

void foo_rele(struct foo *fp) { /* release a reference to the object */

 pthread_mutex_lock(&fp->f_lock);
 if (--fp->f_count == 0) { /* last reference */
 pthread_mutex_unlock(&fp->f_lock);
 pthread_mutex_destroy(&fp->f_lock);
 free(fp);
 } else {
 pthread_mutex_unlock(&fp->f_lock);
 }

}

Threads	 30	

Deadlock	Avoidance	

•  How	deadlock	happens?	
–  Case	#1:	A	thread	lock	the	same	mutex	twice	
–  Case	#2:	Two	threads	(T1/T2)	and	two	mutexes	(MA/MB)	

•  T1	locks	MA	and	then	locks	MB	
•  T2	locks	MB	and	then	locks	MA	
•  T1	and	T2	may	block	each	other	

•  Avoidance	
–  Case	#1	is	easier	to	avoid	
–  Case	#2:	Mutexes	has	to	be	locked	in	the	same	order	

•  Every	thread	locks	MA	first	and	then	locks	MB	
•  However,	it	is	someImes	difficult	to	apply	an	ordered	lock	

–  The	pthread_mutex_trylock	funcIon	
•  Make	sure	that	we	can	lock	all	required	mutexes	at	one	Ime	

Threads	 31	

Reader-Writer	Lock	

•  Similar	to	mutexes,	but	allow	higher	degree	of	parallelism	
•  With	a	mutex,	it	can	be	only	

–  Locked,	or	
–  Unlocked	

•  With	a	reader-write	lock,	it	can	be	
–  Locked	in	read	mode	
–  Locked	in	write	mode,	or	
–  Unlocked	

•  Reader-Write	Lock	
–  MulIple	reader	locks	can	be	acquired	simultaneously	
–  Only	one	can	lock	in	write	mode	
–  If	a	reader/writer	already	locks,	the	coming	writer/reader	must	wait	

unIl	it	unlocks	

Threads	 32	

pthread	Reader-Writer	Lock	

•  Data	type:	pthread_rwlock_t		
•  IniIalize	and	destroy	

–  int	pthread_rwlock_init(pthread_rwlock_t	*restrict	rwlock,	
		const	pthread_rwlockadr_t	*restrict	adr);	

–  int	pthread_rwlock_destroy(pthread_rwlock_t	*rwlock);	
–  Returns:	0	if	OK,	error	number	on	failure		

•  Lock	and	unlock	
–  int	pthread_rwlock_rdlock(pthread_rwlock_t	*rwlock);	
–  int	pthread_rwlock_wrlock(pthread_rwlock_t	*rwlock);	
–  int	pthread_rwlock_tryrdlock(pthread_rwlock_t	*rwlock);	
–  int	pthread_rwlock_trywrlock(pthread_rwlock_t	*rwlock);	
–  int	pthread_rwlock_unlock(pthread_rwlock_t	*rwlock);	
–  Returns:	0	if	OK,	error	number	on	failure		

Threads	 33	

CondiIon	Variable	
•  CondiIon	variable	is	another	synchronizaIon	mechanism	

available	to	threads		
•  It	has	to	be	used	with	mutexes	

–  The	condiIon	itself	is	protected	by	a	mutex		
–  A	thread	must	first	lock	the	mutex	to	change	the	condiIon	state		

•  CondiIon	variable	allows	a	thread	to	wait	in	a	race-free	way	
for	arbitrary	condiIons	to	occur	

Threads	 34	

pthread	CondiIon	Variables:	
IniIalize	and	Destroy	

•  Data	type:	pthread_cond_t	
•  IniIalize	and	destroy	

–  int	pthread_cond_init(pthread_cond_t	*restrict	cond,	
		pthread_condadr_t	*restrict	adr);	

–  int	pthread_cond_destroy(pthread_cond_t	*cond);		
–  Returns:	0	if	OK,	error	number	on	failure	

•  AlternaIvely	
–  pthread_cond_t	cond	=	PTHREAD_COND_INITIALIZER;		

Threads	 35	

pthread	CondiIon	Variables:	
Wait	for	the	CondiIon	

•  Synopsis	
–  int	pthread_cond_wait(pthread_cond_t	*restrict	cond,	

		pthread_mutex_t	*restrict	mutex);	
–  int	pthread_cond_Imedwait(pthread_cond_t	*restrict	cond,	

		pthread_mutex_t	*restrict	mutex,	
		const	struct	Imespec	*restrict	absIme);	

•  The	condiIon	wait	funcIon	unlocks	the	mutex	first	
•  It	then	waits	for	the	condiIon	to	occur	

–  The	running	state	of	the	current	thread	is	set	to	sleeping	

Threads	 36	

pthread	CondiIon	Variables:	Timed	
Wait	

•  The	Imespec	data	structure	
•  It	is	the	absolute	Ime	that	the	wait	gives	up	

•  An	example	of	se~ng	the	absolute	expire	Ime	

struct timespec {
 __time_t tv_sec; /* Seconds. */
 long int tv_nsec; /* Nanoseconds. */

};

void maketimeout(struct timespec *tsp, long minutes) {
 struct timeval now; /* get the current time */
 gettimeofday(&now);
 tsp->tv_sec = now.tv_sec;
 tsp->tv_nsec = now.tv_usec * 1000; /* usec to nsec */
 /* add the offset to get timeout value */
 tsp->tv_sec += minutes * 60;

}
Threads	 37	

pthread	CondiIon	Variables:	
NoIficaIons	

•  NoIfy	threads	that	a	condiIon	has	been	saIsfied		
–  int	pthread_cond_broadcast(pthread_cond_t	*cond);		
–  int	pthread_cond_signal(pthread_cond_t	*cond);	
–  Returns:	0	if	OK,	error	number	on	failure		

•  pthread_cond_broadcast	
–  Wake	up	all	waiIng	threads	

•  pthread_cond_signal	
–  Wake	up	one	waiIng	threads	
–  POSIX.1	allows	the	implementaIon	wakes	up	more	than	one	threads	
–  Waked	up	threads	have	to	contend	for	the	mutex	

Threads	 38	

pthread	CondiIon	Variables:	An	
Example	

struct	msg	{		struct	msg	*m_next;	/*	...	more	stuff	here	...	*/	};	
struct	msg	*workq;	
pthread_cond_t	qready	=	PTHREAD_COND_INITIALIZER;	
pthread_mutex_t	qlock	=	PTHREAD_MUTEX_INITIALIZER;	
void	process_msg(void)	{	

	struct	msg	*mp;	
	for	(;;)	{	
	 	pthread_mutex_lock(&qlock);	
	 	while	(workq	==	NULL)	pthread_cond_wait(&qready,	&qlock);		
	 	mp	=	workq;	
	 	workq	=	mp->m_next;	
	 	pthread_mutex_unlock(&qlock);	
	 	/*	now	process	the	message	mp	*/	
	}	

}	
void	enqueue_msg(struct	msg	*mp)	{	

	pthread_mutex_lock(&qlock);	
	mp->m_next	=	workq;	
	workq	=	mp;	
	pthread_mutex_unlock(&qlock);	
	pthread_cond_signal(&qready);	

}	Threads	 39	

Example:	An	ImplementaIon	of	a	
Worker	Queue	–	Jobs		

•  Job	header	 •  Job	ImplementaIon	

Threads	 40	

Job::Job(int	ch,	pthread_t	tid)	{		
		this->ch	=	ch;	
		this->tid	=	tid;		
}	
pthread_t	Job::getId()	{		
		return	tid;					
}	
void	Job::setId(pthread_t	tid)	{	
		this->tid	=	tid;		
}	
int		Job::getChar()	{	
		return	ch;						
}	
void	Job::setChar(int	ch)	{	
		this->ch	=	ch;				
}	
	

class	Job	{	
private:	
		pthread_t	tid;	
		int	ch;	
public:	
		Job(int	ch	=	0,	pthread_t	tid	=	0);	
		pthread_t	getId();	
		void	setId(pthread_t	tid);	
		int	getChar();	
		void	setChar(int	ch);	
};	

Example:	An	ImplementaIon	of	a	
Worker	Queue	–	Global	DefiniIon	

Threads	 41	

#define	ASSIGNID				/*	Assign	thread	id	to	jobs	*/	
#define	ORDERED					/*	Ensure	that	jobs	are	processed	in	the	order	*/	
#define	N_WORKERS					3	
	
pthread_mutex_t	mutex	=	PTHREAD_MUTEX_INITIALIZER;	
pthread_cond_t	cond	=	PTHREAD_COND_INITIALIZER;	
std::list<Job>	jobqueue;	
	
int	do_the_job(long	id,	int	ch)	{	
		if(ch	==	-1)		/*	terminate	the	worker	*/	
				return	-1;	
		printf("worker-%ld:	%c\n",	id,	ch);	
		return	0;	
}	
	

Example:	An	ImplementaIon	of	a	
Worker	Queue	–	main	Func	(1/4)	

Threads	 42	

int	main(int	argc,	char	*argv[])	{	
				pthread_t	workers[N_WORKERS];	
				//	check	args	
				if(argc	<	2)	{	
								fprintf(stderr,	"usage:	%s	input-string\n",	argv[0]);	
								return	-1;	
				}				
				//	create	workers	
				for(int	i	=	0;	i	<	N_WORKERS;	i++)	{	
								if(pthread_create(&workers[i],	NULL,	
																										worker_main,	(void	*)	(long)	i)	!=	0)	{	
												fprintf(stderr,	"create	worker[%d]	failed\n",	i);	
												exit(-1);				
								}								
				}				

Example:	An	ImplementaIon	of	a	
Worker	Queue	–	main	Func	(2/4)	

Threads	 43	

				//	create	jobs	
				for(char	*ptr	=	argv[1];	*ptr;	ptr++)	{	
#ifdef		ASSIGNID	
								Job	j(*ptr,	workers[(ptr	-	argv[1])	%	N_WORKERS]);	
#else	
								Job	j(*ptr);	
#endif	
								pthread_mutex_lock(&mutex);	
								jobqueue.push_back(j);	
								pthread_mutex_unlock(&mutex);	
								pthread_cond_signal(&cond);	
				}				

Example:	An	ImplementaIon	of	a	
Worker	Queue	–	main	Func	(3/4)	

Threads	 44	

				//	terminate	workers	
				for(int	i	=	0;	i	<	N_WORKERS;	i++)	{	
#ifdef		ASSIGNID	
								Job	j(-1,	workers[i]);	
#else	
								Job	j(-1);	
#endif	
								pthread_mutex_lock(&mutex);	
								jobqueue.push_back(j);	
								pthread_mutex_unlock(&mutex);	
								pthread_cond_signal(&cond);	
				}	

Example:	An	ImplementaIon	of	a	
Worker	Queue	–	main	Func	(4/4)	

Threads	 45	

				//	process	all	jobs	
				size_t	jobs;	
				do	{	
								pthread_mutex_lock(&mutex);	
								jobs	=	jobqueue.size();	
								pthread_mutex_unlock(&mutex);	
								pthread_cond_signal(&cond);	
				}	while(jobs	>	0);	
				//	wait	for	all	workers	
				for(int	i	=	0;	i	<	N_WORKERS;	i++)	{	
								void	*ret;	
								pthread_join(workers[i],	&ret);	
				}	
				//	
				return	0;	
}			/*	end	of	main()	*/	

Example:	An	ImplementaIon	of	a	
Worker	Queue	–	The	Worker	

Threads	 46	

void*	worker_main(void	*arg)	{	
		long	id	=	(long)	arg;	
		printf("#	worker-%ld	created\n",	id);	
		while(1)	{	
				Job	j;	
				pthread_mutex_lock(&mutex);	
				pthread_cond_wait(&cond,	&mutex);	
				//	has	at	least	one	job	
				j	=	jobqueue.front();	
				if(j.getId()	==	0	
				||	pthread_equal(pthread_self(),	j.getId()))	{	
						jobqueue.pop_front();	
#ifdef		ORDERED	
						//	follow	the	order:	unlock	after	job	is	done	
						if(do_the_job(id,	j.getChar())	<	0)	{	
								pthread_mutex_unlock(&mutex);	
								break;	
						}	
#endif	
				}	else	{	

				}	else	{	
						pthread_mutex_unlock(&mutex);	
						continue;	
				}	
				/*	unlock	before	doing	the	job	*/	
				pthread_mutex_unlock(&mutex);	
#ifndef	ORDERED	
				//	could	be	out	of	order	
				if(do_the_job(id,	j.getChar())	<	0)	
						break;	
#endif	
		}	
		printf("#	worker-%ld	terminated\n",	
									id);	
		return	NULL;	
}	

Spin	Lock	

•  Mutex		blocks	a	process	by	sleeping	
•  Spin	lock	blocks	by	busy-waiIng,	or	spinning,	
unIl	the	local	is	acquired	
– More	responsive:	never	being	rescheduled	
–  Consumes	more	CPU	cycles	due	to	spinning	
– Useful	for	non-preempIve	schedulers		

•  Spin	lock	is	less	crucial	for	preempIve	schedulers	
– Modern	mutex	may	be	implemented	with	a	
combinaIon	of	spinning	and	sleeping	

CS5432	Advanced	UNIX	Programming	 47	

Barriers	

•  Barriers	are	used	to	coordinate	mulIple	threads	
working	in	parallel	

•  Allow	each	thread	to	wait	unIl	all	cooperaIng	
threads	have	reached	the	same	point	

•  Create	and	destroy	a	barrier	

•  Wait	for	a	barrier	

Threads	 48	

int	pthread_barrier_init(pthread_barrier_t	*restrict	barrier,	
																									const	pthread_barrierattr_t	*restrict	attr,	
																									unsigned	count);	
int	pthread_barrier_destroy(pthread_barrier_t	*barrier);	
	

int	pthread_barrier_wait(pthread_barrier_t	*barrier);	

Barrier	Example	(1/3)	

Threads	 49	

#define	HAS_BARRIER	
#define	N	5	
	
static	pthread_barrier_t	barrier;	
	
void	*worker(void	*arg)	{	
								long	i,	id	=	(long)	arg;	
								for(i	=	0;	i	<	id+1;	i++)	{	
																printf("%ld",	id+1);	
								}	
								printf("[%ld/done]\n",	id+1);	
#ifdef	HAS_BARRIER	
								pthread_barrier_wait(&barrier);	
#endif	
								return	NULL;	
}	

Barrier	Example	(2/3)	

Threads	 50	

int	main()	{	
								long	i;	
								pthread_t	tid;	
#ifdef	HAS_BARRIER	
								pthread_barrier_init(&barrier,	NULL,	N+1);	
#endif	
								for(i	=	0;	i	<	N;	i++)	{	
																if(pthread_create(&tid,	NULL,	worker,	(void*)	i)	!=	0)	{	
																								fprintf(stderr,	"pthread_create	failed.\n");	
																								return	-1;	
																}	
								}	
#ifdef	HAS_BARRIER	
								pthread_barrier_wait(&barrier);	
								pthread_barrier_destroy(&barrier);	
#endif	
								printf("all	done.\n");	
								return	0;	
}	

Barrier	Example	(3/3)	

•  Without	HAS_BARRIER	 •  With	HAS_BARRIER	

Threads	 51	

$./barrier	
3314444[4/done]	
all	done.	
	
$./barrier	
all	done.	
	
$./barrier	
333[3/done]	
1[1/done]	
22[2/done]	
4444[4/done]	
all	done.	

$./barrier	
22[2/done]	
13[1/done]	
4444[4/done]	
55555[5/done]	
33[3/done]	
all	done.	
	
$./barrier	
43233[3/done]	
2[2/done]	
555551[1/done]	
[5/done]	
444[4/done]	
all	done.	

Assignment	#8	(5%)	

•  Exercise	quesIons	11.1	–	11.5,	each	
quesIon	is	worth	1%	
•  Due	date:	Dec	12th,	2016	

CS5432	Advanced	UNIX	Programming	 52	

