
Chapter	13
Daemon	Processes

CS5432	Advanced	UNIX	Programming 1

Cheng-Hsin Hsu
National	Tsing	Hua	University

Department	of	Computer	Science

Parts	of	the	course	materials	are	courtesy	of	Prof.	Chun-Ying	Huang

Outline

• Introduction
• Daemon	conventions
• Client-server	model
• Coding	rules
• Error	logging
• Single-instance	daemon

Daemon	Processes 2

Introduction
• Daemons	are	processes	that	live	for	a	long	time	
• They	are	often	started	when	the	system	is	
bootstrapped	and	terminate	only	when	the	system	is	
shut	down

• They	don’t	have	a	controlling	terminal	– They	run	in	
background

• Partial	output	from	'ps ajx'	command
– The	'x’	option	also	shows	processes	without	a	terminal
– The	'j’	option	shows	job	related	information
– Process	1	is	usually	the	init process
– Processes	enclosed	by	brackets	[]	are	kernel	processes

Daemon	Processes 3

Daemon	Conventions

• If	the	daemon	uses	a	lock	file,	the	file	is	usually	stored	in	
/var/run/name.pid
– The	lock	file	is	often	used	to	check	the	existence	of	a	running	daemon
– The	daemon	might	need	superuser permissions	to	create	a	file	here

• If	the	daemon	supports	configuration	options,	they	are	usually	
stored	in	/etc
– The	configuration	file	is	often	named	name.conf

• Daemons	can	be	started	from	the	command	line
– They	are	usually	started	from	one	of	the	system	initialization	scripts	

(/etc/rc*	or	/etc/init.d/*)	
• If	a	daemon	has	a	configuration	file,	the	daemon	reads	it	when	it	

starts,	but	usually	won't	look	at	it	again	
– Some	daemons	will	catch	SIGHUP	and	reread	their	configuration	files	

when	they	receive	the	signal	

Daemon	Processes 4

Client-Server	Model
• A	common	use	for	a	daemon	process	is	as	a	
server	process	

• For	example,	the	syslog	library	call	(client)	and	
the	syslogd daemon	(server)
– The	connection	between	the	client	and	the	server	is	
created	by	using	UNIX	domain	datagram	socket

• In	general,	a	server	is	a	process	that	waits	for	a	
client	to	contact	it,	requesting	some	types	of	
service	

• The	communication	channel	between	a	client	and	
a	server	can	be	one-way	or	two-way

Daemon	Processes 5

Coding	Rules

• Use	umask to	reset	permission	masks
• Call	fork	at	parent	and	then	exit	(the	parent	process)

– Will	not	block	the	shell
– Will	not	be	a	process	group	leader	and	can	be	a	session	leader

• Call	setsid
– Becomes	a	session	leader	and	a	process	group	leader
– Has	no	controlling	terminal
– System	V	systems	suggest	to	call	fork	again	and	terminate	the	parent	–

to	prevent	the	child	process	from	acquiring	controlling	terminal
• Change	the	current	working	directory,	may	be	to	the	root	directory
• Close	unused	file	descriptors,	and	redirect	descriptors	{0,	1,	2}	to	

/dev/null
• Setup	log	files	or	log	systems	to	store	output	from	the	daemon

Daemon	Processes 6

Error	Logging
• A	daemon	process	cannot	write	error	message	to	
standard	error
– It	does	not	have	a	controlling	terminal

• A	daemon	should	not	write	messages	to	the	console
• Administrators	may	prefer	to	have	a	centralized	place	
to	collect	logs	from	all	daemon	process

• The	syslog facility	initially	proposed	in	the	BSD	system
• Many	systems	derived	the	design	from	syslogd,	e.g.,	
Linux’s	rsyslogd (reliable	and	extended	syslogd)

Daemon	Processes 7

The	BSD	syslog	Facility

Daemon	Processes 8

Linux	Kernel	Logging	Stack

• Note:	syslog(2)	and	
syslog(3)	are	
different
– syslog(2):	Read	and	

clear	the	kernel	log	
buffer

– syslog(3):	Write	log	
to	log	system

• What	we	introduce	
later	will	be	syslog(3)	
in	glibc

Source:	http://www.ibm.com/developerworks/library/l-kernel-logging-apis/

Daemon	Processes 9

The	syslog	Interface
• Open,	write	to,	and	close	the	log	system

• The	call	to	openlog is	optional
– It	will	be	called	automatically	on	the	first	call	to	syslog
– You	can	specify	an	ident	string	to	the	log	system
– You	can	set	option	and	facility:	discuss	later

• The	call	to	closelog is	also	optional	– It	simply	
closes	the	descriptor	ß why	this	is	enough?

void openlog(const char *ident, int option, int facility);
void syslog(int priority, const char *format, ...);
void closelog(void);
int setlogmask(int maskpri);

Daemon	Processes 10

openlog Options

Option Description

LOG_CONS If	the	log	message	can't	be	sent	to	syslogd via	the	UNIX	domain	datagram,	the	
message	is	written	to	the	console	instead.

LOG_NDELAY Open	the	UNIX	domain	datagram	socket	to	the	syslogd daemon	immediately;	
don't	wait	until	the	first	message	is	logged.	Normally,	the	socket	is	not	opened	
until	the	first	message	is	logged.	

LOG_NOWAIT Do	not	wait	for	child	processes	that	might	have	been	created	in	the	process	of	
logging	the	message.	This	prevents	conflicts	with	applications	that	catch	
SIGCHLD,	since	the	application	might	have	retrieved	the	child's	status	by	the	
time	that	syslog	calls	wait.	

LOG_ODELAY Delay	the	open	of	the	connection	to	the	syslogd daemon	until	the	first	message	
is	logged.	

LOG_PERROR Write	the	log	message	to	standard	error	in	addition	to	sending	it	to	syslogd.	

LOG_PID Log	the	process	ID	with	each	message.	This	is	intended	for	daemons	that	fork	a	
child	process	to	handle	different	requests	.

Daemon	Processes 11

openlog Facility

• Can	be	used	to	distinguish	the	source	of	logs
• May	be	not	available	on	all	systems
Facility Description Facility Description

LOG_AUTH authorization	programs,	e.g.,	login,	
su,	getty,	…

LOG_LPR line	printer	system: lpd,	lpc

LOG_AUTHPRIV same	as	LOG_AUTH,	but	logged	to	
file	with	restricted	permissions

LOG_MAIL the	mail	system

LOG_CRON cron and	at LOG_NEWS The	Usenet	network	news	system

LOG_DAEMON system	daemons:	inetd,	routed,	… LOG_SYSLOG the	syslogd itself

LOG_FTP FTP daemon	(ftpd) LOG_USER message	from	other	user	processes	
(default)

LOG_KERN messages	generated	by	the	kernel LOG_UUCP the	UUCP	system

LOG_LOCAL0	~	
LOG_LOCAL7

reserved	for	local	use

Daemon	Processes 12

syslog	Priority

• The	priority	argument	is	a	combination	of	the	
openlog facility	and	the	following	log	levels

• Ordered	from	highest	to	lowest
Level Description

LOG_EMERG emergency	(system	is	unusable)	(highest	priority)	

LOG_ALERT condition	that	must	be	fixed	immediately

LOG_CRIT critical	condition	(e.g.,	hard	device	error)

LOG_ERR error	condition

LOG_WARNING warning	condition

LOG_NOTICE normal,	but	signification	condition

LOG_INFO informational message

LOG_DEBUG debug	message	(lowest	priority)

Daemon	Processes 13

openlog/syslog	Example

• An	example	for	line	printer	spooler	daemon

– The	%m	is	used	to	print	the	corresponding	error	string	(of	
errno)

• A	similar	implementation

openlog("lpd", LOG_PID, LOG_LPR);
syslog(LOG_ERR, "open error for %s: %m", filename);

syslog(LOG_ERR | LOG_LPR, "open error for %s: %m", filename);

Daemon	Processes 14

Single-Instance	Daemons

• Some	daemons	are	implemented	so	that	only	
a	single	copy	of	the	daemon	should	be	
running	at	a	time	for	proper	operation	

• The	daemon	might	need	exclusive	access	to	a	
device	
– For	example:	the	cron daemon

• Sample	codes	to	check	the	existence	of	a	
running	daemon
– Based	on	the	pid file	for	the	daemon

Daemon	Processes 15

Single-Instance	Daemons:	Check	
Running	Daemons	

int already_running(void) {
int fd;
char buf[16];
if((fd = open(LOCKFILE, O_RDWR|O_CREAT, LOCKMODE)) < 0) {

syslog(LOG_ERR, "can't open %s: %s", LOCKFILE, strerror(errno));
exit(1);

}
if (lockfile(fd) < 0) { /* lockfile: introduce in the next chapter */

if (errno == EACCES || errno == EAGAIN) {
close(fd);
return 1;

}
syslog(LOG_ERR, "can't lock %s: %s", LOCKFILE, strerror(errno));
exit(1);

}
ftruncate(fd, 0);
sprintf(buf, "%ld\n", (long) getpid());
write(fd, buf, strlen(buf));
return 0;

}

Daemon	Processes 16

No	Assignment	this	Time
The	assignment	will	be	combined	with	the	next	Chapter.	

CS5432	Advanced	UNIX	Programming 17

