
Chapter	14
Advanced	I/O

CS5432	Advanced	UNIX	Programming 1

Cheng-Hsin Hsu
National	Tsing	Hua	University

Department	of	Computer	Science

Parts	of	the	course	materials	are	courtesy	of	Prof.	Chun-Ying	Huang

Outline

• Non-blocking	I/O
• Record	Locking
• I/O	Multiplexing
• Asynchronous	I/O
• readv and	writev functions
• readn and	writen functions
• Memory-mapped	I/O

Advanced	I/O 2

Non-Blocking	I/O
• Many	I/O	operations	may	be	slow	or	blocked	forever

– read	from	pipe,	terminal	devices,	and	network	devices
– write	to	a	pipe	(if	buffer	is	full)	and	network	devices	(if flow	

control	is	enabled)
– open	a	pipe	for	write,	but	no	reader	is	available
– read	or	write	of	files	that	have	mandatory	record	locking	

enabled
– ioctl opertions
– Some	other	IPC	functions

• Non-blocking	I/O	ensures	that	an	I/O	operation	not	be	
blocked
– If	an	operation	cannot	be	completed,	an	error	is	returned
– It	may	return	partial	results

Advanced	I/O 3

Enable	Non-Blocking	I/O
• Pass	O_NONBLOCK	flag	when	opening	a	file	(use	the	open	

system	call)
• Use	fcntl to	turn	on	O_NONBLOCK	for	an	opened	file
• A	sample	function	to	set	fcntl flag:	set_fl()

void
set_fl(int fd, int flags) { /* flags are file status flags to turn on */

int val;

if ((val = fcntl(fd, F_GETFL, 0)) < 0)
err_sys("fcntl F_GETFL error");

val |= flags; /* turn on flags */

if (fcntl(fd, F_SETFL, val) < 0)
err_sys("fcntl F_SETFL error");

}

Advanced	I/O 4

A	Non-Blocking	I/O	Example

char buf[500000];
int main(void) {

int ntowrite, nwrite;
char *ptr;
ntowrite = read(STDIN_FILENO, buf, sizeof(buf));
fprintf(stderr, "read %d bytes\n", ntowrite);
set_fl(STDOUT_FILENO, O_NONBLOCK); /* set nonblocking */
ptr = buf;
while (ntowrite > 0) {

errno = 0;
nwrite = write(STDOUT_FILENO, ptr, ntowrite);
fprintf(stderr, "nwrite = %d, errno = %d\n", nwrite, errno);
if (nwrite > 0) { ptr += nwrite; ntowrite -= nwrite; }

}
clr_fl(STDOUT_FILENO, O_NONBLOCK); /* clear nonblocking */
exit(0);

}

Advanced	I/O 5

A	Non-Blocking	I/O	Example

$ dd if=/dev/urandom bs=1k count=500 | hexdump -C > /tmp/data
$ ls -la /tmp/data
-rw-rw-r-- 1 chuang chuang 2528009 Apr 29 18:17 /tmp/data
$./a.out < /tmp/data > /tmp/output
read 500000 bytes
nwrite = 500000, errno = 0
$./a.out < /tmp/data | cat > /dev/null
read 500000 bytes
nwrite = 65536, errno = 0 ; this depends on how cat reads
nwrite = -1, errno = 11
nwrite = -1, errno = 11
nwrite = 65536, errno = 0
nwrite = 65536, errno = 0
nwrite = 65536, errno = 0
nwrite = 65536, errno = 0
nwrite = 65536, errno = 0
nwrite = 65536, errno = 0
nwrite = 41248, errno = 0

Advanced	I/O 6

On	Linux:
#define	EAGAIN 11 /*	Try	again	*/

Record	Locking
• What	happens	when	two	people	edit	the	same	file	at	the	same	time?	

– Usually	only	contains	the	content	from	the	last	writer
• Sometimes,	we	may	have	to	ensure	that	there	is	only	one	writer

– For	example,	database	systems
• Record	locking

– To	prevent	other	processes	from	modifying	a	region	of	a	file
– The	record	locking	is	actually	“byte-range”	locking
– An	entire	file	can	be	locked
– Lock	and	unlock	operations

Advanced	I/O 7

Record	Locking	with	fcntl

• Lock	operations:	reader	lock,	writer	lock,	and	unlock
– Reader	lock	can	be	shared
– Writer	lock	is	exclusive

• Lock	the	entire	file
– l_start =	0,	l_whence =	SEEK_SET,	l_len =	0

int fcntl(int filedes, int cmd, ... /* struct flock *flockptr */);

struct flock {
short l_type; /* F_RDLCK, F_WRLCK, or F_UNLCK */
off_t l_start; /* offset in bytes, relative to l_whence */
short l_whence; /* SEEK_SET, SEEK_CUR, or SEEK_END */
off_t l_len; /* length, in bytes; 0 means lock to EOF */
pid_t l_pid; /* returned with F_GETLK */

};

Advanced	I/O 8

Record	Locking	with	fcntl (Cont’d)
• To	obtain	a	read	lock,	the	descriptor	must	be	open	for	
reading

• To	obtain	a	write	lock,	the	descriptor	must	be	open	for	
writing

• fcntl commands
– F_GETLK:	Determine	whether	the	lock	described	by	
flockptr is	blocked	by	some	other	lock – check	lock	type	
(l_type)	

– F_SETLK:	Set	the	lock	described	by	flockptr – It	has	to	
follow	the	compatibility	rules	(see	next	page)

– F_SETLKW:	This	command	is	a	blocking	version	of	F_SETLK.	
The	process	wakes	up	either	when	the	lock	becomes	
available	or	when	interrupted	by	a	signal.

Advanced	I/O 9

Compatibility	between	Different	Lock	
Types

Request	for	…

Region	
currently	
has	…

reader	lock writer	lock

No	locks OK OK

One	or	more	
reader	locks OK denied

One	writer locks denied denied

Advanced	I/O 10

Compatibility	between	Different	Lock	
Types	(Cont’d)

• The	compatibility	rule	applies	to	lock	requests	made	from	
different	processes
– Not	to	multiple	lock	requests	made	by	a	single	process	

• If	a	process	has	an	existing	lock	on	a	range	of	a	file	…
– Subsequent	attempts	to	place	a	lock	on	the	same	range	by	the	

same	process	will	replace	the	existing	lock	with	the	new	one	
• For	example

– Suppose	a	process	already	has	a	write	lock	on	bytes	16–32	of	a	
file	

– If	it	attempts	to	place	a	read	lock	on	bytes	16–32,	the	request	
will	succeed	

– The	original	write	lock	will	be	replaced	by	the	new	read	lock

Advanced	I/O 11

Sample	Functions	and	Macros	to	Lock	
and	Unlock	a	Region

int
lock_reg(int fd, int cmd, int type, off_t offset, int whence, off_t len) {

struct flock lock;
lock.l_type = type; /* F_RDLCK, F_WRLCK, F_UNLCK */
lock.l_start = offset; /* byte offset, relative to l_whence */
lock.l_whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */
lock.l_len = len; /* #bytes (0 means to EOF) */
return(fcntl(fd, cmd, &lock));

}

#define read_lock(fd, offset, whence, len) \
lock_reg((fd), F_SETLK, F_RDLCK, (offset), (whence), (len))

#define readw_lock(fd, offset, whence, len) \
lock_reg((fd), F_SETLKW, F_RDLCK, (offset), (whence), (len))

#define write_lock(fd, offset, whence, len) \
lock_reg((fd), F_SETLK, F_WRLCK, (offset), (whence), (len))

#define writew_lock(fd, offset, whence, len) \
lock_reg((fd), F_SETLKW, F_WRLCK, (offset), (whence), (len))

#define un_lock(fd, offset, whence, len) \
lock_reg((fd), F_SETLK, F_UNLCK, (offset), (whence), (len))

Advanced	I/O 12

Sample	Functions	and	Macros	to	Test	
Locking	Condition

pid_t
lock_test(int fd, int type, off_t offset, int whence, off_t len) {

struct flock lock;
lock.l_type = type; /* F_RDLCK or F_WRLCK */
lock.l_start = offset; /* byte offset, relative to l_whence */
lock.l_whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */
lock.l_len = len; /* #bytes (0 means to EOF) */
if (fcntl(fd, F_GETLK, &lock) < 0)

err_sys("fcntl error");
/* terminate the process with an error message */

if (lock.l_type == F_UNLCK)
return(0); /* false, region is not locked by another proc */

return(lock.l_pid); /* true, return pid of lock owner */
}

#define is_read_lockable(fd, offset, whence, len) \
(lock_test((fd), F_RDLCK, (offset), (whence), (len)) == 0)

#define is_write_lockable(fd, offset, whence, len) \
(lock_test((fd), F_WRLCK, (offset), (whence), (len)) == 0)

Advanced	I/O 13

Record	Locking	and	Deadlock
• Deadlock	occurs	when	two	processes	are	each	waiting	for	a	

resource	that	the	other	has	locked	
– Suppose	we	have	to	processes	Pa	and	Pb
– Pa	locks	region	#1	and	then	region	#2
– Pb locks	region	#2	and	then	region	#1

• A	sample	function	to	lock	one	byte

static void lockabyte(const char *name, int fd, off_t offset) {
if (writew_lock(fd, offset, SEEK_SET, 1) < 0)

err_sys("%s: writew_lock error", name);
printf("%s: got the lock, byte %ld\n", name, offset);

}

Advanced	I/O 14

A	Deadlock	Example

int main(void) {
int fd;
pid_t pid;
if ((fd = creat("templock", FILE_MODE)) < 0)

err_sys("creat error");
if (write(fd, "ab", 2) != 2)

err_sys("write error");
TELL_WAIT();
if ((pid = fork()) < 0) { err_sys("fork error"); }
else if (pid == 0) {

lockabyte("child", fd, 0);
TELL_PARENT(getppid()); /* notify parent to continue its execution */
WAIT_PARENT();
lockabyte("child", fd, 1);

} else {
lockabyte("parent", fd, 1);
TELL_CHILD(pid); /* notify child to continue its execution */
WAIT_CHILD();
lockabyte("parent", fd, 0);

}
exit(0);

}
Advanced	I/O 15

Implied	Inheritance	and	Release	of	
Locks

• Three	basic	rules
• Rule	#1:	Locks	are	associated	with	a	process	and	a	file
– When	a	process	terminates,	all	its	locks	are	released	
– Whenever	a	descriptor	is	closed,	any	locks	on	the	file	
referenced	by	that	descriptor	for	that	process	are	released

• Rule	#2:	Locks	are	never inherited by	the	child	across	a	
fork	
– The	child	has	to	call	fcntl to	obtain	its	own	locks	on	any	
descriptors	that	were	inherited	across	the	fork	

• Rule	#3:	Locks	are	inherited by	a	new	program	across	
an	exec	

Advanced	I/O 16

Sample	Lock	Implementation

Advanced	I/O 17

Another	Example	– lockfile:
Write	Lock	on	an	Entire	File

• Recall:	A daemon	can	use	a	lock	on	a	file	to	ensure	
that	only	one	copy	of	the	daemon	is	running

• The	lockfile function
int lockfile(int fd) {

struct flock fl; fl.l_type = F_WRLCK;

fl.l_start = 0;
fl.l_whence = SEEK_SET;
fl.l_len = 0;

return(fcntl(fd, F_SETLK, &fl));
}

Advanced	I/O 18

Locks	at	End	of	File

• Most	implementations	convert	an	l_whence value	of	
SEEK_CUR	or	SEEK_END	into	an	absolute	file	offset	

• An	erroneous	implementation
writew_lock(fd, 0, SEEK_END, 0);
write(fd, buf, 1);
un_lock(fd, 0, SEEK_END);
write(fd, buf, 1);

Advanced	I/O 19

Advisory	VS	Mandatory	Locks

• Most	systems	only	implement	advisory	locks
• Advisory	locks

– All	processes	have	to	follow	the	same	procedures	to	access	protected	
files

– lock	->	read/write	->	unlock
– If	a	(uncooperating)	process	DOES	NOT	follow	the	procedure,	i.e.,	does	

not	call	lock/unlock	routines	before	read/write,	it	could	break	the	
protection

• Mandatory	locks
– Once	a	process	has	locked	a	file,	read/write	access	to	the	file	may	be	

not	granted,	EVEN if	a	process	does	not	call	lock/unlock	routines	
before	read/write

– On	Linux,	a	filesystem	can	be	mount	with	“mand”	option	to	enable	
mandatory	locks

– Some	systems	enable	mandatory	lock	if	a	file	has	enabled	SGID	but	
disabled	group-execute	bits

Advanced	I/O 20

Effect	of	Mandatory	Locks

• open	usually	succeeds	even	if	a	file	is	locked	
by	a	mandatory	lock

• However,	if	a	file	is	opened	with	O_TRUNC	or	
O_CREAT,	open	returns	EAGAIN	immediately

Advanced	I/O 21

Type	of	existing	lock	on	
region	held	by	other	

process	

Blocking	descriptor,	
tries	to	

Nonblocking descriptor,
tries	to	

read write read write

read	lock OK blocks OK EAGAIN

write	lock blocks blocks EAGAIN EAGAIN

Record	Locking – fcntl Alternatives
• flock
– Lock	a	file	descriptor
– LOCK_SH:	place	a	shared	lock
– LOCK_EX:	place	a	exclusive	lock
– LOCK_UN:	remove	an	existing	lock

• lockf
– Lock	starting	from	the	current	file	position
– F_LOCK:	set	an	exclusive	lock,	could	be	blocked
– F_TLOCK:	same	as	F_LOCK,	but	never	blocks	– returns	an	
error	if	a	lock	failed

– F_UNLOCK:	unlock
– F_TEST:	test	if	a	region	is	locked	or	not

Advanced	I/O 22

int flock(int fd, int operation);

int lockf(int fd, int cmd, off_t len);

Record	Locking	Supported	by	Various	
UNIX	systems

Advanced	I/O 23

System Advisory Mandatory fcntl lockf flock

SUS • • XSI

FreeBSD	8.0 • • • •

Linux	3.2.0 • • • • •

Mac	OS	X	10.6.8 • • • •

Solaris	10 • • • • •

SUS:	Single	UNIX	Specification
XSI:	X/Open	System	Interfaces

Test	of	Mandatory	Locks	(1/3)

Advanced	I/O 24

int main(int argc, char *argv[]) {
int fd; pid_t pid;
char buf[5];
struct stat statbuf;
if (argc != 2) {

fprintf(stderr, "usage: %s filename\n", argv[0]);
exit(1);

}
if ((fd = open(argv[1], O_RDWR | O_CREAT | O_TRUNC, FILE_MODE)) < 0)

err_sys("open error");
if (write(fd, "abcdef", 6) != 6)

err_sys("write error");
/* enable SGID and disable group exetuion */
if (fstat(fd, &statbuf) < 0)

err_sys("fstat error");
if (fchmod(fd, (statbuf.st_mode & ~S_IXGRP) | S_ISGID) < 0)

err_sys("fchmod error");
TELL_WAIT();
if ((pid = fork()) < 0) { err_sys("fork error"); }

(continue to the next page ...)

Test	of	Mandatory	Locks	(2/3)

Advanced	I/O 25

else if (pid > 0) { /*parent*/
/* write lock entire file */
if (write_lock(fd, 0, SEEK_SET, 0) < 0)

err_sys("write_lock error");
TELL_CHILD(pid);
if (waitpid(pid, NULL, 0) < 0) err_sys("waitpid error");

} else { /* child */
WAIT_PARENT(); /* wait for parent to set lock */
set_fl(fd, O_NONBLOCK);
if (read_lock(fd, 0, SEEK_SET, 0) != -1) /* no wait */

err_sys("child: read_lock succeeded");
printf("read_lock of already-locked region returns %d\n", errno);
/* now try to read the mandatory locked file */
if (lseek(fd, 0, SEEK_SET) == -1) err_sys("lseek error");
if (read(fd, buf, 2) < 0)

err_ret("read failed (mandatory locking works)");
else

printf("read OK (no mandatory locking), buf = %2.2s\n", buf);
}
exit(0);

}

Test	of	Mandatory	Locks	(3/3)
• Running	the	example
• On	Linux	(without	mandatory	locks)

– Note:	errno 11	means	EAGAIN

• On	Linux	(with	mandatory	locks)
– We	mount	a	RAM	disk	with	“mand”	option	first	(require	root	

privileges)

Advanced	I/O 26

$./fig14.12-mandatory /tmp/xxx
read_lock of already-locked region returns 11
read OK (no mandatory locking), buf = ab

mkdir /tmp/mand
mount -t tmpfs -o mand tmpfs /tmp/mand
chmod 1777 /tmp/mand/.
$./fig14.12-mandatory /tmp/mand/xxx
read_lock of already-locked region returns 11
read failed (mandatory locking works): Resource temporarily unavailable

I/O	Multiplexing	– Why?
• For	one-way	communication,	usually	we	can	read	from	one	

descriptor	and	write	to	another	

• However,	for	two-way	communication,	the	above	
implementation	does	not	work

Advanced	I/O 27

while ((n = read(STDIN_FILENO, buf, BUFSIZ)) > 0)
if (write(STDOUT_FILENO, buf, n) != n)

err_sys("write error");

Possible	Solutions*

• Work	with	two	processes
– Each	process	is	used	for	handle	one-way	communication
– When	the	child	receives	EOF,	it	terminates	and	the	parent	

receives	SIGCHLD
– When	the	parent	receives	EOF,	it	has	to	notify	the	child	to	

stop.	We	can	use	a	signal	for	this,	e.g.,	SIGUSR1
• Work	with	two	threads
• Work	with	polling

– Polling	in	a	busy	loop
– Set	the	descriptors	to	non-blocking
– Perform	reads	on	both	descriptors	and	forward	when	data	

is	available

Advanced	I/O 28

Possible	Solutions	(Cont’d)

• Asynchronous	I/O	(discussed	later)
– The	kernel	notifies	us	with	a	signal	when	a	descriptor	is	ready	

for	I/O	
– But	not	all	systems	support	this	feature	
– It	may	work	only	on	descriptors	that	refer	to	terminal	devices	or	

networks	
– We	have	only	one	SIGIO	or	SIGPOLL	per	process	– how	to	

differentiate	multiple	descriptors?
– You	have	to	check	each	(non-blocking)	descriptors

• I/O	multiplexing	(discussed	later,	before	asynchronous	I/O)
– That’s	what	we	have	in	this	chapter:	Work	with	select	and	poll
– Highest	compatibility,	usually	O(n)	complexity

• Modern	UNIX	systems	supports	event	multiplexing
– kqueue for	BSD	and	epoll for	Linux
– O(1)	algorithms:	Much	faster	than	traditional	I/O	multiplexing

Advanced	I/O 29

The	select	Function
• Lets	us	do	I/O	multiplexing	under	all	POSIX-compatible	

platforms	
• Synopsis

• The	arguments
– Which	descriptors	we	are	interested	in	
– What	conditions	we	are	interested	in	for	each	descriptor	(read,	

write,	exception)
– How	long	we	want	to	wait	

• Returns
– The	total	count	of	the	number	of	descriptors	that	are	ready	
– Which	descriptors	are	ready	for	each	of	the	three	conditions	

Advanced	I/O 30

int select(int maxfdp1,
fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *tvptr);

Arguments	for	the	select	Function
• The	“maxfdp1”

– The	maximum	descriptor	number	in	the	descriptor	sets	plus	one
• The	“tvptr”	– How	long	we	want	to	wait?

– NULL:	Wait	infinitely
– Not	NULL,	but	tvptr->tv_sec ==	0	and	tvptr->tv_usec ==	0:	No	

wait
– Not	NULL,	and	tvptr->tv_sec !=	0	or	tvptr->tv_usec !=	0:	Wait	for	

the	given	amount	of	time
• The	descriptor	sets

– Read,	write,	and	exception
– A	number	of	functions	can

be	used	to	manipulate
the	descriptor	sets

Advanced	I/O 31

Manipulate	Descriptor	Sets

• Functions

• Examples

Advanced	I/O 32

void FD_ZERO(fd_set *fdset); /* empty the set */
void FD_SET(int fd, fd_set *fdset); /* add a fd into the set */
void FD_CLR(int fd, fd_set *fdset); /* remove a fd from the set */

int FD_ISSET(int fd, fd_set *fdset); /* determine if a fd is in the set */

fd_set rset;
int fd;

FD_ZERO(&rset);
FD_SET(fd, &rset);
FD_SET(STDIN_FILENO, &rset);
... (after returned from select)
if(FD_ISSET(fd, &rset)) { ... }

A	select	Example

Advanced	I/O 33

fd_set readset, writeset;
FD_ZERO(&readset); FD_ZERO(&writeset);
FD_SET(0, &readset); FD_SET(3, &readset);
FD_SET(1, &writeset); FD_SET(2, &writeset);
select(4, &readset, &writeset, NULL, NULL);

Return	from	select

• The	return	value
– The	number	of	descriptors	in	“ready”	state,	0	on	timeout,	or	-1	on	

error
• The	select	function	changes	the	values	stored	in	readfds,	writefds,	

and	exceptfds to	reflect	the	state	of	interested	descriptors
• The	select	function	may	optionally	change	the	values	in	tvptr
• What	does	“ready”	mean?

– reafds:	if	a	read	from	that	descriptor	will	not	block	
– writefds:	if	a	write	to	that	descriptor	will	not	block.	
– exceptfds:	if	an	exception	condition	is	pending	on	that	descriptor,	it	

depends	on	the	type	of	a	descriptor
• A	descriptor	is	blocking	or	not	does	not	affect	whether	select	blocks	

– It	only	depends	on	the	“tvptr”	argument

Advanced	I/O 34

The	pselect Function
• It	is	equivalent	to	the	select	function,	with	additional	benefits

– It	uses	a	high	resolution	timeout	structure	(in	nano-second)
– Setup	signal	mask:	an	atomic	operation	for	sigprocmask and	select

• Synopsis

Advanced	I/O 35

int pselect(int maxfdp1,
fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
const struct timespec *tsptr,
const sigset_t *sigmask);

The	poll	Function
• Similar	to	select,	with	a	different	programming	interface
• Instead	of	building	a	set	of	descriptors	for	each	condition	

(read,	write,	and	exception),	we	pass	an	array	of	descriptors
• Synopsis

– Returns:	Number	of	ready	descriptors,	0	on	timeout,	or	-1	on	error

• The	pollfd structure

Advanced	I/O 36

int poll(struct pollfd fdarray[], nfds_t nfds, int timeout);

struct pollfd {
int fd; /* file descriptor to check, or <0 to ignore */
short events; /* events of interest on fd */
short revents; /* events that occurred on fd */

};

The	events	and	revents Flags

Advanced	I/O 37

Name Input	to
events?

Results	from
revents?

Description

POLLIN • • Equivalent	to	POLLRDNORM|POLLRDBAND	

POLLRDNORM • • Normal	data	(priority	0)	can	be	read	without	blocking

POLLRDBAND • • Data	from	a	nonzero	priority	band	can	be	read	without	
blocking

POLLPRI • • High-priority	data	can	be	read	without	blocking	

POLLOUT • • Normal	data	can	be	written	without	blocking

POLLWRNORM • • Same	as	POLLOUT

POLLWRBAND • • Data	for	a	nonzero	priority	band	can	be	written	without	
blocking	

POLLERR • An	error	has	occurred

POLLHUP • A	hangup has	occurred

POLLNVAL • The	descriptor	does	not	reference	an	open	file

The	poll	Function	(Cont’d)

• Note:	a	“hangup”	descriptor
–We	can	no	longer	write	to	the	descriptor
– However,	we	may	still	read	data	from	the	
descriptor

• The	”timeout”	value
– How	long	we	want	to	wait
– -1:	Wait	infinitely
– 0:	No	wait
– >	0:	Wait	for	“timeout”	milliseconds

Advanced	I/O 38

Asynchronous	I/O

• BSD	asynchronous	I/O
– Asynchronous	notification	using	signal
– Supported	on	Linux,	BSD,	and	Mac	OS	X

• POSIX	asynchronous	I/O
– Provide	more	flexibilities
– In	addition	to	using	signals,	it	is	able	to	launch	a	
thread	to	handle	the	notifications

– Not	widely	supported

Advanced	I/O 39

BSD	Asynchronous	I/O

• Asynchronous	notification	from	the	kernel	by	signals
• Only	one	signal	per	process

– Unable	to	tell	which	descriptor	the	signal	corresponds	to	when	
the	signal	is	delivered	

– Have	to	check	all	the	involved	descriptors
• Procedures	to	work	with	BSD	asynchronous	I/O
1. Register	a	handler	for	SIGIO	or	SIGPOLL
2. Set	the	owner	process	(group)	for	the	descriptor	–

fcntl(F_SETOWN)
3. Enable	asynchronous	I/O	– fcntl(F_SETFL)	and	add	O_ASYNC	flag
• You	may	also	need	to	register	a	handler	for	SIGURG	if	the	

descriptor	supports	out-of-band	data
• Step	#3	may	be	failed	on	unsupported	type	of	descriptors

– It	may	work	with	terminals,		pseudoterminals,		sockets,	pipes
and FIFOs

Advanced	I/O 40

BSD	Asynchronous	I/O	– Echo	
Example

Advanced	I/O 41

void sig_io(int s) {
int rlen;
char buf[8192];
if((rlen = read(0, buf, sizeof(buf))) > 0)

write(1, buf, rlen);
}

int main() {
int flag;
signal(SIGIO, sig_io);
if(fcntl(STDIN_FILENO, F_SETOWN, getpid()) < 0)

err_sys("fcntl(F_SETOWN)");
if((flag = fcntl(STDIN_FILENO, F_GETFL)) < 0)

err_sys("fcntl(F_GETFL)");
if(fcntl(STDIN_FILENO, F_SETFL, flag | O_ASYNC) < 0)

err_sys("fcntl(F_SETFL)");
for(;;) pause();
return 0;

}

POSIX	Asynchronous	I/O
• More	flexible
• Procedures	to	work	with	POSIX	asynchronous	I/O
1. Fill	the	AIO	control	block	structure
2. Initiate	an	AIO	operation	by	calling	aio_read or	aio_write

function
3. Optionally,	call	aio_fsync to	perform	all	pending	write	

operations
4. Use	aio_error function	to	check	the	completion	status
5. Use	aio_return function	to	get	AIO	operation’s	return	value
• We	can	suspend	an	AIO	process	by	calling	aio_suspend
function

• We	can	cancel	an	AIO	operation	by	calling	aio_cancel

Advanced	I/O 42

POSIX	AIO	Control	Block

• Compared	to	read	and	write	system	call

Advanced	I/O 43

strct aiocb {
int aio_fildes; /* File descriptor */
off_t aio_offset; /* File offset */
volatile void *aio_buf; /* Location of buffer */
size_t aio_nbytes; /* Length of transfer */
int aio_reqprio; /* Request priority */
struct sigevent aio_sigevent; /* Notification method */
int aio_lio_opcode; /* Operation to be performed;

lio_listio() only */
/* Various implementation-internal fields not shown */

};

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

The	sigevent Structure

Advanced	I/O 44

union sigval { /* Data passed with notification */
int sival_int; /* Integer value */
void *sival_ptr; /* Pointer value */

};

struct sigevent {
int sigev_notify; /* Notification method:

SIGEV_NONE, SIGEV_SIGNAL, SIGEV_THREAD */
int sigev_signo; /* Notification signal */
union sigval sigev_value; /* Data passed with notification */
void (*sigev_notify_function) (union sigval);

/* Function used for thread
notification (SIGEV_THREAD) */

void *sigev_notify_attributes;
/* Attributes for notification thread

(SIGEV_THREAD) */
};

POSIX	AIO	Basic	Functions

• Initiate	an	asynchronous	read	operation

• Initiate	an	asynchronous	write	operation

• Request	to	perform	data	synchronization

• Returns:	0	if	OK,	or	-1	on	error

Advanced	I/O 45

int aio_write(struct aiocb *cb);

int aio_read(struct aiocb *cb)

int aio_fsync(int op, struct aiocb *cb);

POSIX	AIO:	Completion	Status

• Check	completion	status

– Returns
– 0:	Success
– -1:	Error,	check	errno
– EINPROGRESS:	operation	is	still	pending
– Other:	error	code	numbers

• Get	return	value	of	a	completed	operation

– Can	be	called	only	once	for	each	AIO	operation
– Return:	the	return	value	of	read,	write,	or	fsync operation,	or	-1	

on	error

Advanced	I/O 46

int aio_error(const struct aiocb *cb);

int aio_return(const struct aiocb *cb);

POSIX	AIO	Example:	cat

Advanced	I/O 47

static void aio_completed(union sigval param);
static char buf[8192];
static struct aiocb cb = {

.aio_buf = buf,

.aio_nbytes = sizeof(buf),

.aio_sigevent.sigev_notify = SIGEV_THREAD,

.aio_sigevent.sigev_notify_function = aio_completed
};

int
main(int argc, char *argv[]) {

if(argc < 2) cb.aio_fildes = 0;
else cb.aio_fildes = open(argv[1], O_RDONLY);
if(cb.aio_fildes < 0) err_sys("open");
if(aio_read(&cb) < 0) err_sys("main/aio_read");
for(;;) pause();
return 0;

}

POSIX	AIO	Example:	cat	(Cont’d)

Advanced	I/O 48

void aio_completed(union sigval param) {
int err, len;
off_t off;
if((err = aio_error(&cb)) != 0) {

if(err == -1) err_sys("error");
if(err == EINPROGRESS) return;
fprintf(stderr, "error: %s\n", strerror(err));
exit(-1);

}
len = aio_return(&cb);
write(1, (char*) cb.aio_buf, len);
if((off = lseek(cb.aio_fildes, 0, SEEK_CUR)) >= 0)

cb.aio_offset = off;
if(off >= 0 && len != cb.aio_nbytes)

exit(0);
if(aio_read(&cb) < 0)

err_sys("aio_read");
}

readv and	writev Functions
• Read	into	and	write	from	multiple	noncontiguous	buffers	in	a	

single	function	call	
• These	operations	are	called	scatter	read	and	gather	write	
• Synopsis

– Returns:	Number	of	bytes	read	or	written,	or	-1	on	error	

• The	iovec structure

Advanced	I/O 49

ssize_t readv(int filedes, const struct iovec *iov , int iovcnt);
ssize_t writev(int filedes, const struct iovec *iov, int iovcnt);

struct iovec {
void *iov_base; /* starting address of buffer */
size_t iov_len; /* size of buffer */

};

readv and	writev Functions	(Cont’d)

• We	can	combine	multiple	data	reads	into	a	single	one	system	
call

• Similarly,	we	can	combine	multiple	data	writes	into	a	single	
write	system	call

Advanced	I/O 50

readn and	writen Functions

• Pipes,	FIFOs,	terminals,	networks,	and	some	devices	have	the	
two	properties
– A	read	operation	may	return	less	than	we	asked	for	when	the	

data	available	is	less	than	the	buffer	size	or	an	EOF	is	
encountered

– A	write	operation	may	also	return	less	than	we	specified	if	there	
is	a	flow	control	mechanism	applied

• We	can	use	the	two	functions	to	read	or	write	EXACTLY	N	
bytes	of	data

• These	two	functions	simply	call	read	or	write	as	many	times	
as	required	to	read	or	write	the	entire	N	bytes	of	data	

• Synopsis

– Returns:	Number	of	bytes	read	or	written,	or	-1	on	error	

Advanced	I/O 51

ssize_t readn(int filedes, void *buf, size_t nbytes);
ssize_t writen(int filedes, void *buf, size_t nbytes);

The	Implementation	of	readn

Advanced	I/O 52

ssize_t /* Read "n" bytes from a descriptor */
readn(int fd, void *ptr, size_t n) {

size_t nleft;
ssize_t nread;
nleft = n;
while (nleft > 0) {

if ((nread = read(fd, ptr, nleft)) < 0) {
if (nleft == n)

return(-1); /* error, return -1 */
else

break; /* error, return amount read so far */
} else if (nread == 0) {

break; /* EOF */
}
nleft -= nread;
ptr += nread;

}
return(n - nleft); /* return >= 0 */

}

The	Implementation	of	writen

Advanced	I/O 53

ssize_t /* Write "n" bytes to a descriptor */
writen(int fd, void *ptr, size_t n) {

size_t nleft;
ssize_t nwritten;
nleft = n;
while (nleft > 0) {

if ((nwritten = write(fd, ptr, nleft)) < 0) {
if (nleft == n)

return(-1); /* error, return -1 */
else

break; /* error, return amount written so far */
} else if (nwritten == 0) {

break;
}
nleft -= nwritten;
ptr += nwritten;

}
return(n - nleft); /* return >= 0 */

}

Memory-Mapped	I/O*

• Memory-mapped	I/O	lets	us	map	a	file	on	disk	into	a	buffer	in	
memory	

• When	we	fetch	bytes	from	the	buffer,	the	corresponding	
bytes	of	the	file	are	read	

• When	we	store	data	in	the	buffer,	the	corresponding	bytes	
are	automatically	written	to	the	file	

• This	lets	us	perform	I/O	without	using	read	or	write
• We	can	tell	the	kernel	to	map	a	given	file	to	a	region	in	

memory	using	the	mmap function

– Returns:	starting	address	of	mapped	region	if	OK,	or	
MAP_FAILED	on	error	

Advanced	I/O 54

void *mmap(void *addr, size_t len, int prot, int flag,
int filedes, off_t off);

mmap Function	Arguments

• addr:	Specify	the	address	we	want	the	mapped	region	to	start
– We	normally	set	this	to	0	to	allow	the	system	to	choose	the	starting	

address	
• prot:	Specify	the	protection	of	the	mapped	region	

– PROT_NONE,	OR	of	PROT_READ,	PROT_WRITE,	and	PROT_EXEC
– The	protection	specified	for	a	region	cannot	allow	more	access	than	

the	open	mode	of	the	file.	Read-only	files	cannot	be	mmap’ed with	
PROT_WRITE

• filedes,	off,	and	length
– The	opened	file	descriptor,	offset,	and	length	

• flags	– One	of	MAP_SHARED	and	MAP_PRIVATE	must	be	used
– MAP_FIXED:	The	return	value	must	equal	addr – not	recommended
– MAP_SHARED:	Store	operations	modify	(write)	the	mapped	file
– MAP_PRIVATE:	Store	operations	cause	a	private	copy	of	the	mapped	

file	to	be	created	– Any	modifications	affect	the	copy,	not	the	original	
file

Advanced	I/O 55

Illustration	of	mmap in	Action

Advanced	I/O 56

mmap Relevant	Functions
• mprotect changes	the	protection	of	a	mapped	region

– addr must	be	aligned	to	a	page	boundary
• msync flushes	changes	to	the	file

– Only	works	for	MAP_SHARED	regions
– Flags	must	be	either	MS_ASYNC	or	MS_SYNC,	plus	optional	
MS_INVALIDATE

– MS_INVALIDATE	asks	to	invalidate	other	mappings	of	the	
same	file

Advanced	I/O 57

int mprotect(void *addr, size_t len, int prot);

int msync(void *addr, size_t len, int flags);

mmap Relevant	Functions	(Cont’d)

• A	memory-mapped	region	is	automatically	
unmapped	when	the	process	terminates	or	
by	calling	munmap directly	

• Closing	the	file	descriptor	filedes DOES	NOT
unmap the	region

• Modifications	to	memory	in	a	MAP_PRIVATE	
region	are	discarded when	the	region	is	
unmapped

Advanced	I/O 58

int munmap(caddr_t addr, size_t len);

mmap:	Final	Notes
• mmap length	can	be	larger	than	the	file	size,	but	data	
written	to	those	additional	spaces	does	not	append	to	
the	file

• mmap regions	are	inherited	by	a	child,	but	are	not	
inherited	across	exec

• Many	mmap flags	are	platform	dependent
– See	mmap manual	pages	on	your	platform!

• Memory	allocation	with	mmap
– Special	case	to	use	flag	MAP_ANONYMOUS
– A	memory	region	is	not	associated	with	a	file	descriptor
– The	argument	filedes and	off	are	ignored
– Some	implementations	require	filedes to	be	-1

Advanced	I/O 59

CS5432	Advanced	UNIX	Programming 60

Source:	https://s-media-cache-ak0.pinimg.com/originals/e0/e7/43/e0e7432216c9c2fc59664c190337e886.jpg

