
Chapter	15	
Classical	Inter-Process	Communica6on	

CS5432	Advanced	UNIX	Programming	 1	

Cheng-Hsin	Hsu	
Na#onal	Tsing	Hua	University	

Department	of	Computer	Science	
	

Parts	of	the	course	materials	are	courtesy	of	Prof.	Chun-Ying	Huang	

Introduc6on	

•  We	have	described	the	process	control	
primi6ves	and	seen	how	to	invoke	mul6ple	
processes		

•  How	does	a	process	communicate	with	other	
processes?	

•  The	inter-process	communica6on	(IPC)	

Classical	IPC	 2	

Common	IPC	Mechanisms	

•  (Half-duplex)	pipes	
•  FIFOs	
•  Message	queues	
•  Semaphores	
•  Shared	memory	
•  Sockets	ß	not	today…	

Classical	IPC	 3	

Pipes	
•  The	oldest	form	of	UNIX	System	IPC		
•  Historically,	they	have	been	half	duplex	
–  Some	modern	system	has	full	duplex	pipe,	but	for	
program	portability,	it	is	not	suggested	to	use	full	
duplex	pipe.	

•  Pipes	can	be	used	only	between	processes	that	
have	a	common	ancestor		
– Normally,	a	pipe	is	created	by	a	process		
–  The	process	then	calls	fork	
–  The	pipe	is	then	used	between	the	parent	and	the	
child	

Classical	IPC	 4	

Crea6ng	a	Pipe	
•  Synopsis	

–  Returns:	0	if	OK,	-1	on	error		
•  Two	descriptors	are	created	

–  filedes[0]	is	opened	for	reading	
–  filedes[1]	is	opened	for	wri6ng		

Classical	IPC	 5	

int	pipe(int	filedes[2]);	

Sharing	a	Pipe	
•  A	pipe	in	a	single	process	is	useless	
•  Normally,	the	process	that	calls	pipe	then	calls	fork	

–  This	creates	an	IPC	channel	from	the	parent	to	the	child	or	vice	versa	

Classical	IPC	 6	

Sharing	a	Pipe	(Cont’d)	
•  As	the	pipe	is	half	duplex,	the	following	ac6ons	may	apply	

depending	on	the	scenario	
–  If	the	pipe	is	used	for	a	child	to	send	data	to	its	parent	

•  The	parent	closes	fd[1]	and	the	child	closes	fd[0]	
–  If	the	pipe	is	used	for	a	parent	to	send	data	to	its	child	

•  The	parent	closes	fd[0]	and	the	child	closes	fd[1],	see	the	figure	

Classical	IPC	 7	

An	Example	of	Crea6ng	a	Pipe	

int	main(void)	{	
	int	n;	
	int	fd[2];	
	pid_t	pid;	
	char	line[MAXLINE];	
	if	(pipe(fd)	<	0)	
	 	err_sys("pipe	error");	
	if	((pid	=	fork())	<	0)	{	
	 	err_sys("fork	error");	
	}	else	if	(pid	>	0)	{ 	/*	parent	*/	
	 	close(fd[0]);	
	 	write(fd[1],	"hello	world\n",	12);	
	}	else	{ 	/*	child	*/	
	 	close(fd[1]);	
	 	n	=	read(fd[0],	line,	MAXLINE);	
	 	write(STDOUT_FILENO,	line,	n);	
	}	
	exit(0);	

}	
Classical	IPC	 8	

Process	Synchroniza6on:	Using	a	Pipe	

•  Recall:	In	Chapter	8	
–  Race	Condi6ons	between	the	Parent	and	the	Child	

Classical	IPC	 9	

 int main(void) {
 pid_t pid;

+ TELL_WAIT();
 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) {

+ WAIT_PARENT(); /* parent goes first */
 charatatime("output from child\n");
 } else {
 charatatime("output from parent\n");

+ TELL_CHILD(pid);
 }
 exit(0);
 }

Process	Synchroniza6on:	Using	a	Pipe	(Cont’d)	

static	int	pfd1[2],	pfd2[2];	
	
void	TELL_WAIT(void)	{	

	if	(pipe(pfd1)	<	0	||	pipe(pfd2)	<	0)	
					err_sys("pipe	error");	

}	
	
void	WAIT_PARENT(void)	{	

	char	c;	
	if	(read(pfd1[0],	&c,	1)	!=	1)	
	 	err_sys("read	error");	
	if	(c	!=	'p')	
	 	err_quit("WAIT_PARENT:	incorrect	data");	

}	
	
void	TELL_CHILD(pid_t	pid)	{	

	if	(write(pfd1[1],	"p",	1)	!=	1)	
	 	err_sys("write	error");	

}	
Classical	IPC	 10	

Only	part	of	the	implementa6on…	

popen	and	pclose	Func6ons	

•  Execute	a	command	and	access	its	standard	I/O	
–  Read	from	its	standard	output,	or	
– Write	to	its	standard	input	
– As	we	are	using	half-duplex	pipe,	we	cannot	read/
write	at	the	same	6me	

•  Synopsis	
–  FILE	*popen(const	char	*cmdstring,	const	char	*type);		
–  Returns:	file	pointer	if	OK,	NULL	on	error		
–  int	pclose(FILE	*fp);		
–  termina6on	status	of	cmdstring,	or	-1	on	error		

Classical	IPC	 11	

popen	and	pclose	Func6ons	
•  Opera6ons	

–  create	a	pipe	(pipe)	
–  fork	a	child	(fork)	
–  close	the	unused	ends	of	the	

pipe	(close)	
–  configure	the	descriptor	

(dup2)	
–  execute	a	shell	to	run	the	

command	(exec),	and	
–  wait	for	the	command	to	

terminate	(wait)	

•  popen	with	a	type	of	“r”	

•  popen	with	a	type	of	“w”	

Classical	IPC	 12	

Implementa6on	of	popen	and	pclose	

•  See	Figure	15.12	of	the	textbook	
•  popen	

–  Make	sure	that	type	is	“r”	or	“w”	
–  Create	a	buffer	for	popen	children	PIDs	
–  Create	a	pipe	and	fork	a	child	process	
–  For	the	child:	

•  If	type	is	“r”,	close	fd[0],	otherwise	close	fd[1]	
•  execl("/bin/sh",	"sh",	"-c",	cmdstring,	(char	*)0);	

–  For	the	parent	
•  If	type	is	“r”,	close	fd[1],	otherwise	close	fd[0]	
•  If	type	is	“r”,	FILE	*fp	=	fdopen(fd[0],	type)	
•  Otherwise,	FILE	*fp	=	fdopen(fd[1],	type)	
•  Save	child	PID	(indexed	by	pipe	fd)	and	return	fp	

Classical	IPC	 13	

Implementa6on	of	popen	and	pclose	(Cont’d)	

•  pclose	
–  Get	descriptor	number	by	fd	=	fileno(fp);	
–  Retrieve	the	pid	(indexed	by	pipe	fd)	
–  Reset	the	corresponding	pid	on	the	children’s	pid	buffer	to	zero	
–  fclose(fp)	
–  waitpid(pid,	&stat,	0)	
–  return(stat)	

Classical	IPC	 14	

A	popen	Example:	Filter	
•  A	filter	that	converts	uppercases	into	lowercases	

int	main(void)	{	
	int	c;	
	while	((c	=	getchar())	!=	EOF)	{	
					if	(isupper(c))	
	 						c	=	tolower(c);	
					if	(putchar(c)	==	EOF)	
	 						err_sys("output	error");	
					if	(c	==	'\n')	
	 						fflush(stdout);	
	}	
	exit(0);	

}	

Classical	IPC	 15	

popen	Example:	Filters	(Cont’d)	
•  A	program	that	run	the	filter	using	popen,	and	show	the	

filtered	content	
int	main(void)	{	

	char				line[MAXLINE];	
	FILE				*fpin;	
	if	((fpin	=	popen("./myuclc",	"r"))	==	NULL)	
	 	err_sys("popen	error");	
	for	(;	;)	{	
	 	fputs("prompt>	",	stdout);	
	 	fflush(stdout);	
	 	if	(fgets(line,	MAXLINE,	fpin)	==	NULL)	/* read from pipe */
	 	 	break;	
					if	(fputs(line,	stdout)	==	EOF)	
	 					err_sys("fputs	error	to	pipe");	
	}	
	if	(pclose(fpin)	==	-1)	
	 	err_sys("pclose	error");	
	putchar('\n');	
	exit(0);	

}	

Classical	IPC	 16	

Coprocess	
•  Defini6on	of	an	UNIX	system	filter	

–  A	process	that	reads	from	standard	input	and	writes	to	standard	
output	

•  Coprocess	
–  An	UNIX	system	filter	becomes	a	coprocess	if	the	filter’s	input	and	

output	are	both	associated	with	the	same	program	
–  We	need	two	pipe()	calls	to	setup	the	communica6on	channel	

between	a	program	and	its	coprocess	

Classical	IPC	 17	

Coprocess,	an	Example	
•  A	filter	that	read	from	STDIN,	adds	two	numbers,	and	write	to	

STDOUT	
–  Implemented	using	file	I/O	

Classical	IPC	 18	

int	main(void)	{	
	int					n,	int1,	int2;	
	char				line[MAXLINE];	
	while	((n	=	read(STDIN_FILENO,	line,	MAXLINE))	>	0)	{	
		line[n]	=	0 	/* null terminated */
		if	(sscanf(line,	"%d%d",	&int1,	&int2)	==	2)	{	
		 	sprintf(line,	"%d\n",	int1	+	int2);	
		 	n	=	strlen(line);	
		 	if	(write(STDOUT_FILENO,	line,	n)	!=	n)	
		 		err_sys("write	error");	
		}	else	{	
		 	if	(write(STDOUT_FILENO,	"invalid	args\n",	13)	!=	13)	
		 		err_sys("write	error");	
		}	
	}	
	exit(0);	

}	

Coprocess,	an	Example	(Cont’d)	
int	main(void)	{	
		int	n,	fd1[2],	fd2[2];	
		pid_t	pid;	
		char	line[MAXLINE];	
		if	(signal(SIGPIPE,	sig_pipe)	==	SIG_ERR)	
				err_sys("signal	error");	
		if	(pipe(fd1)	<	0	||	pipe(fd2)	<	0)	
				err_sys("pipe	error");	
		if	((pid	=	fork())	<	0)	err_sys("fork	error");		
		else	if	(pid	>	0)	{					/*	parent	*/	
				close(fd1[0]);	
				close(fd2[1]);	
				while	(fgets(line,	MAXLINE,	stdin)	!=	NULL)	{	
						n	=	strlen(line);	
						if	(write(fd1[1],	line,	n)	!=	n)	
								err_sys("write	error	to	pipe");	
						if	((n	=	read(fd2[0],	line,	MAXLINE))	<	0)		
								err_sys("read	error	from	pipe");	
						if	(n	==	0)	{	
								err_msg("child	closed	pipe");	
								break;	
						}	
						line[n]	=	0;								/*	null	terminate	*/	
						if	(fputs(line,	stdout)	==	EOF)	
								err_sys("fputs	error");	
				}	

				if	(ferror(stdin))	
						err_sys("fgets	error	on	stdin");	
				exit(0);	
		}	else	{															/*	child	*/		
				close(fd1[1]);	
				close(fd2[0]);	
				if	(fd1[0]	!=	STDIN_FILENO)	{	
						if	(dup2(fd1[0],	STDIN_FILENO)	!=	STDIN_FILENO)	
								err_sys("dup2	error	to	stdin");	
						close(fd1[0]);	
				}	
				if	(fd2[1]	!=	STDOUT_FILENO)	{	
						if	(dup2(fd2[1],	STDOUT_FILENO)	!=	
STDOUT_FILENO)	
								err_sys("dup2	error	to	stdout");	
						close(fd2[1]);	
				}	
				if	(execl("./add2",	"add2",	(char	*)0)	<	0)																									
						err_sys("execl	error");	
		}	
		return	0;	
}	

The	sig_pipe	func6on	
just	print	a	message	and	
then	exit(1);	

Classical	IPC	 19	

Coprocess	and	Standard	I/O	

•  What	happens	if	the	coprocess	is	
implemented	using	standard	I/O?	
– The	filter	no	longer	works!	

•  It	is	because	the	I/O	buffering	mode	
– When	standard	input/output	are	not	terminal	
devices,	they	are	fully	buffered	

– Solu6on:	We	need	pseudo-terminals	devices	to	
emulate	the	line	buffer	or	unbuffered	channel	
(not	discussed	in	this	Chapter)	

Classical	IPC	 20	

FIFOs	
•  First	in,	first	out	
•  FIFOs	are	some6mes	called	named	pipes		
•  Pipes	can	be	only	used	between	processes	of	a	common	

ancestor	
•  With	FIFOs,	unrelated	processes	can	exchange	data		
•  Crea6ng	a	FIFO,	synopsis	

–  int	mkfifo(const	char	*pathname,	mode_t	mode);		
–  Returns:	0	if	OK,	-1	on	error		

•  Once	we	have	used	mkfifo	to	create	a	FIFO,	we	open	it	using	
open		

Classical	IPC	 21	

Open	an	FIFO	
•  When	we	open	a	FIFO,	the	non-blocking	flag	(O_NONBLOCK)	

affects	what	happens		
•  In	the	normal	case	(O_NONBLOCK	not	specified)	

–  An	open	for	read-only	blocks	un6l	another	process	opens	the	FIFO	for	
wri6ng		

–  Similarly,	an	open	for	write-only	blocks	un6l	some	other	process	
opens	the	FIFO	for	reading		

•  If	O_NONBLOCK	is	specified	
–  An	open	for	read-only	returns	immediately			
–  But	an	open	for	write-only	returns	-1	with	errno	set	to	ENXIO	if	no	

process	has	the	FIFO	open	for	reading		

Classical	IPC	 22	

Share	an	FIFO	

•  It	is	common	to	have	mul6ple	writers	for	a	
given	FIFO		

•  We	have	to	worry	about	atomic	writes	if	we	
don't	want	the	writes	from	mul6ple	processes	
to	be	interleaved		

Classical	IPC	 23	

Applica6ons	of	FIFOs	

•  Data	passing	
– Pass	data	without	crea6ng	intermediate	
temporary	files	

•  Client-server	communica6on	
– Used	as	rendezvous	points	in	client-server	
applica6ons			

Classical	IPC	 24	

FIFO	Applica6ons	–	Data	Passing	

•  Scenario	
– Process	a	filtered	input	stream	twice	

Classical	IPC	 25	

FIFO	Applica6ons	–	Data	Passing	(Cont’d)	

•  Solu6ons	with	FIFO	
–  $ mkfifo fifo1
$ prog3 < fifo1 &
$ prog1 < infile | tee fifo1 | prog2

Classical	IPC	 26	

FIFO	Applica6ons	–	Client-Server	
Communica6on	

•  Scenario	#1:	One	way	communica6on	
– Clients	send	requests	to	a	server	

Classical	IPC	 27	

FIFO	Applica6ons	–	Client-Server	
Communica6on	(Cont’d)	

•  Scenario	#2:	Two-way	communica6ons	
– Client-server	communica6on	using	FIFOs	

Classical	IPC	 28	

XSI	(SysV)	IPC	

•  XSI	–	X/Open	System	Interface	
•  Three	types	of	XSI	IPC		
– Message	queue	
– Semaphore	
– Shared	memory	

•  Common	user	commands	
–  ipcs	–	list	IPC		objects	
–  ipcrm	–	remove	IPC	objects	

Classical	IPC	 29	

XSI	(SysV)	IPC	(Cont’d)	
•  IPC	iden6fiers	

–  Each	IPC	structure	in	the	kernel	is	referred	to	by	a	non-nega6ve	
integer	iden6fier		

–  We	need	to	know	the	iden6fier	to	access	the	IPC	object	

•  However,	the	iden6fier	is	an	internal	name	for	an	IPC	object	
–  We	need	a	naming	scheme	to	refer	the	same	IPC	object	–	the	IPC	

keys	

•  IPC	keys	
–  Whenever	an	IPC	structure	is	being	created	,	a	key	must	be	specified		
–  Keys	are	of	data	type	key_t	
–  Then,	the	iden6fier	of	the	referred	IPC	object	is	returned	

Classical	IPC	 30	

Sharing	of	IPC	Objects	
•  A	server	can	create	an	IPC	object	with	a	key	of	IPC_PRIVATE	

–  The	iden6fier	of	the	created	IPC	object	can	be	passed	by	storing	
in	a	file,	or	

–  Fork	a	child,	which	inherits	the	iden6fier	directly	
•  A	server	and	a	client	can	agree	on	a	key	by	defining	the	key	

in	a	common	header	
•  A	server	and	a	client	can	agree	on	a	pathname	and	a	

project	ID	
–  The	key	can	be	generated	by	the	xok	func6on	
–  key_t	xok(const	char	*path,	int	id);		
–  path	must	be	an	exis6ng	file,	and	
–  id	is	a	8-bit	non-zero	number	(you	can	not	use	more	than	8	
bits!)	

Classical	IPC	 31	

XSI	IPC	–	Advantages	and	
Disadvantages	*	

•  Advantages	
–  Reliable	
–  Supports	flow	control	
–  Record	based	
–  Can	be	processed	in	other	than	first-in,	first-out	order		

•  Disadvantages	
–  IPC	data	may	lex	in	the	system	even	if	no	one	refers	to	it	
–  They	are	different	from	file	system	objects,	i.e.	no	
descriptors	

–  Therefore,	we	need	a	different	set	of	system	calls	to	
manipulate	them	

Classical	IPC	 32	

Message	Queues	
•  A	message	queue	is	a	linked	list	of	messages	stored	within	the	

kernel		
•  Each	queue	has	a	message	queue	iden6fier	
•  Crea6ng	or	opening	a	message	queue	

–  int	msgget(key_t	key,	int	flag);		
–  Returns:	0	if	OK,	-1	on	error	
–  Upon	crea6ng,	the	least	significant	9	bits	of	flag	define	the	

permissions	for	the	message	queue	
–  flag	can	be	OR’ed	with	IPC_CREAT	and/or	IPC_EXCL	

Classical	IPC	 33	

Message	Queue	–	System	Limita6ons	

•  The	limita6ons	may	vary	on	different	plazorms	
–  “ipcs	-l”	command	on	Linux	
–  “ipcs	-Q”	on	BSD	and	Mac	OS	X	

Classical	IPC	 34	

$	ipcs	-l	
	
...	
	
------	Messages	Limits	--------	
max	queues	system	wide	=	32768	
max	size	of	message	(bytes)	=	8192	
default	max	size	of	queue	(bytes)	=	16384	

Controlling	a	Message	Queue	

•  The	internal	data	structure	associated	with	a	
message	queue	

Classical	IPC	 35	

struct msqid_ds {
 struct ipc_perm msg_perm; /* Ownership and permissions */
 time_t msg_stime; /* Time of last msgsnd(2) */
 time_t msg_rtime; /* Time of last msgrcv(2) */
 time_t msg_ctime; /* Time of last change */
 unsigned long __msg_cbytes; /* Current number of bytes in queue (non-standard) */
 msgqnum_t msg_qnum; /* Current number of messages in queue */
 msglen_t msg_qbytes; /* Maximum number of bytes allowed in queue */
 pid_t msg_lspid; /* PID of last msgsnd(2) */
 pid_t msg_lrpid; /* PID of last msgrcv(2) */

};

Controlling	a	Message	Queue	(Cont’d)	

•  Synopsis	
–  int	msgctl(int	msqid,	int	cmd,	struct	msqid_ds	*buf);	
–  Returns:	0	if	OK,	-1	on	error	

•  The	cmd	can	be	
–  IPC_STAT:	Retrieve	the	internal	msqid_ds	data	
structure	

–  IPC_SET:	Set	the	msqid_ds	
•  msg_perm.uid,	msg_perm.gid,	msg_perm.mode,	and	
msg_qbytes		

•  Only	superuser	is	able	to	increase	msg_qbytes	
–  IPC_RMID:	Remove	the	queue	(immediately)	

Classical	IPC	 36	

Send	a	Message	into	Queue	

•  Synopsis	
–  int	msgsnd(int	msqid,	const	void	*ptr,	size_t	nbytes,	int	flag);		

•  The	message,	which	is	pointed	to	by	ptr	
–  It	must	be	started	with	an	long	integer	(the	type	of	the	message)	
–  A	nbytes	message	follows	the	long	integer	

–  The	flag	
•  IPC_NOWAIT:	non-blocking	access	to	the	queue	
•  If	the	queue	is	full	and	IPC_NOWAIT	is	specified	

–  It	returns	a	error	with	errno	set	to	EAGAIN	

Classical	IPC	 37	

struct	msgbuf	{	
	long	type; 	/*	message	type,	must	be	>	0	*/	
	char	mtext[1]; 	/*	message	data	*/	

};	

Receive	a	Message	from	Queue	
•  Synopsis	

–  ssize_t	msgrcv(int	msqid,	void	*ptr,	size_t	nbytes,	long	type,	int	flag);	
–  Returns:	size	of	data	por6on	of	message	if	OK,	-1	on	error		

•  The	message	type	
–  If	type	==	0,	the	first	message	on	the	queue	is	returned		
–  If	type	>	0,	the	first	message	on	the	queue	whose	message	type	

equals	type	is	returned		
–  If	type	<	0,	the	first	message	on	the	queue	whose	message	type	is	the	

lowest	value	less	than	or	equal	to	the	absolute	value	of	type	is	
returned		

Classical	IPC	 38	

Receive	a	Message	from	Queue	
(Cont’d)	

•  The	flags	
–  IPC_NOWAIT:	non-blocking	access	to	the	queue	
– MSG_EXCEPT	

•  If	type	>	0,	the	first	message	on	the	queue	whose	
message	type	has	a	non-equal	type	is	returned	

– MSG_NOERROR	
•  If	the	received	message	has	a	longer	size	than	nbytes,	it	
is	truncated	and	then	returned	

Classical	IPC	 39	

Message	Queue:	Hello,	World!		
Example	

Classical	IPC	 40	

struct	msgbuf	{	
		long	mtype;							/*	message	type,	must	be	>	0	*/	
		char	mtext[0];				/*	message	data	*/	
};	
	
int	main()	{	
		int	qid	=	-1,	rlen,	wlen;	
		char	buf[1024];	
		pid_t	pid;	
		struct	msgbuf	*msg	=	(struct	msgbuf*)	buf;	
		//	
		if((qid	=	msgget(IPC_PRIVATE,	IPC_CREAT|IPC_EXCL|0660))	<	0)	
				err_sys("msgget");	
		if((pid	=	fork())	<	0)	
				err_sys("fork");	

Message	Queue:	Hello,	World!		
Example	(Cont’d)	

Classical	IPC	 41	

		if(pid	==	0)	{		/*	child	*/	
				msg->mtype	=	0;	
				if((rlen	=	msgrcv(qid,	msg,	sizeof(buf)-sizeof(*msg),	0,	0))	<	0)		
						err_sys("msgrcv");	
				printf("[%ld]	%s	(%u	bytes)\n",	msg->mtype,	msg->mtext,	rlen);	
		}	else	{								/*	parent	*/	
				msg->mtype	=	1024;			
				wlen	=	snprintf(msg->mtext,	sizeof(buf)-sizeof(*msg),	
								"%s",	MESSAGE);	
				if(msgsnd(qid,	msg,	wlen+1,	0)	<	0)	
						perror("msgsnd");	
				else	if(wait(&wlen)	<	1)	
						perror("wait");	
				if(qid	>=	0)									
						if(msgctl(qid,	IPC_RMID,	NULL)	<	0)	
								err_sys("msgctl(RMID)");	
		}																														
		return	0;	
}	

Semaphore	(1/3)	
•  A	semaphore	is	a	shared	counter	
•  It	is	used	to	provide	access	to	a	shared	data	object	for	

mul6ple	processes		
•  Procedures	for	a	process	to	obtain	a	shared	resource	

–  Test	the	semaphore	that	controls	the	resource		
–  If	the	value	of	the	semaphore	is	posi6ve,	the	process	can	use	the	

resource		
•  The	process	decrements	the	semaphore	value	by	1		

–  If	the	value	of	the	semaphore	is	0	
•  The	process	goes	to	sleep	un6l	the	semaphore	value	is	greater	than	0		

Classical	IPC	 42	

Semaphore	(2/3)	
•  Features	

–  A	semaphore	is	a	set	of	one	or	more	semaphore	values	
•  It	is	not	simply	a	single	non-nega6ve	value	

–  Semaphore	crea6on	(semget)	and	ini6aliza6on	(semctl)	are	
independent	
•  It	may	be	a	problem	as	we	cannot	atomically	create	a	new	semaphore	
set	and	ini6alize	all	the	values	in	the	set	

–  All	XSI	IPC	objects	are	not	released	automa6cally	
•  They	remain	in	existence	even	when	no	process	is	using	them	
•  We	have	to	worry	about	a	program’s	termina6on	without	releasing	
semaphores	

•  This	can	be	solved	by	the	semaphore	UNDO	feature	

Classical	IPC	 43	

Semaphore	(3/3)	

•  Crea6ng	or	opening	a	set	of	semaphore	
–  int	semget(key_t	key,	int	nsems,	int	semflg);	
– Returns:	semaphore	ID	if	OK,	-1	on	error	
– Creates	a	new	set	of	nsems	semaphores	

•  If	opening	an	exis6ng	semaphores,	this	value	can	be	0	
– Upon	crea6ng,	the		least		significant		9	bits	of	
semflg	define	the	permissions	for	the	semaphore	
set	

– semflg	can	be	OR’ed	with	IPC_CREAT	and/or	
IPC_EXCL	

Classical	IPC	 44	

Semaphore	–	System	Limita6ons	
•  The	limita6ons	may	vary	on	different	plazorms	

– “ipcs	-l”	command	on	Linux	
– “ipcs	-S”	on	BSD	and	Mac	OS	X	

Classical	IPC	 45	

$	ipcs	-l	
	
...	
	
------	Semaphore	Limits	--------	
max	number	of	arrays	=	128	
max	semaphores	per	array	=	250	
max	semaphores	system	wide	=	32000	
max	ops	per	semop	call	=	32	
semaphore	max	value	=	32767	

Controlling	Semaphores	(1/3)	
•  The	internal	data	structure	associated	with	a	semaphore	set	

•  Each	member	of	the	semaphore	set	has	at	least	these	a}ributes	
maintained	by	the	kernel:	
–  semval: 	semaphore	value,	always	>=	0	
–  sempid: 	pid	for	last	opera6on		
–  semncnt: 	#	of	processes	wai6ng	for	the	semval	to	increase	
–  semzcnt: 	#	of	processes	wai6ng	for	the	semval	to	be	zero	

Classical	IPC	 46	

struct semid_ds {
 struct ipc_perm sem_perm; /* Ownership and permissions */
 time_t sem_otime; /* Last semop time */
 time_t sem_ctime; /* Last change time */
 unsigned short sem_nsems; /* No. of semaphores in set */

};

Controlling	Semaphores	(2/3)	
•  Synopsis	

–  int	semctl(int	semid,	int	semnum,	int	cmd,	/*	union	semun	arg	*/);	
–  Returns:	it	depends	on	commands	
–  This	func6on	may	be	called	with	3	or	4	arguments,	depends	on	cmd	
–  The	4th	argument	

union semun {
 int val; /* Value for SETVAL */
 struct semid_ds *buf; /* Buffer for IPC_STAT, IPC_SET */
 unsigned short *array; /* Array for GETALL, SETALL */

};

Classical	IPC	 47	

Controlling	Semaphores	(3/3)	
•  Available	cmds	

Classical	IPC	 48	

cmds	 Descrip6on	

IPC_STAT	 Retrieve	the	internal	semid_ds	data	structure	and	stores	in	arg.buf	

IPC_SET	 Set	the	internal	semid_ds	data	structure	by	arg.buf	
n 	sem_perm.uid,	sem_perm.gid,	and	sem_perm.mode	

IPC_RMID	 Remove	the	semaphore	(immediately)	

GETVAL	 Return	the	value	of	semnum-th	member	

SETVAL	 Set	the	value	of	semnum-th	member	by	arg.val	

GETPID	 Return	the	value	of	sempid	for	the	semnum-th	member	

GETNCNT	 Return	the	value	of	semncnt	for	the	semnum-th	member	

GETZCNT	 Return	the	value	of	semzcnt	for	the	semnum-th	member	

GETALL	 Retrieve	all	semaphore	values,	returned	by	arg.array	

SETALL	 Set	all	semaphore	values	by	arg.array	

Semaphore	Opera6ons	
•  Synopsis	

–  int	semop(int	semid,	struct	sembuf	semoparray[],	size_t	nops);		
–  Returns:	0	if	OK,	-1	on	error	
–  The	semoparray	argument	is	a	pointer	to	an	array	of	semaphore	

opera6ons	
–  Please	see	the	next	slide	for	the	details	of	opera6ons	

struct sembuf {
 unsigned short sem_num; /* member # in set (0, 1, ..., nsems-1) */
 short sem_op; /* operation (negative, 0, or positive) */
 short sem_flg; /* IPC_NOWAIT, SEM_UNDO */

};

Classical	IPC	 49	

Semaphore	Opera6ons	–	Return	Resources	

•  sem_op	is	posi6ve:	sem_op	is	added	to	the	
semaphore's	value		

•  If	SEM_UNDO	is	specified,	sem_op	is	
subtracted	from	the	semaphore's	adjustment	
value	for	this	process	

Classical	IPC	 50	

Semaphore	Opera6ons	–	Obtain	Resources	

•  sem_op	is	nega6ve	
•  If	resources	are	available	(|sem_op|	>=	sem_val)	

–  |sem_op|	is	substracted	from	the	semaphore's	value	
–  If	SEM_UNDO	is	specified,	|sem_op|	is	added	to	the	semaphore’s	

adjustment	value	for	this	process	
•  If	resources	are	not	available	(|sem_op|	<	sem_val)	

–  If	IPC_NOWAIT	is	specified,	semop	returns	an	error	of	EAGAIN	
–  If	IPC_NOWAIT	is	not	specified	

•  The	semncnt	value	for	this	semaphore	is	increased		
•  The	process	is	suspended	un6l	…	

–  The	semaphore's	value	becomes	greater	than	or	equal	to	the	|sem_op|,	
the	semncnt	should	be	increased		

–  The	semaphore	is	removed	from	the	system:	semop	returns	an	error	of	
EIDRM	

–  It	is	interrupted	by	a	signal:	semop	returns	an	error	of	EINTR	

Classical	IPC	 51	

Semaphore	Opera6ons	–	Wait	un6l	Zero	

•  sem_op	is	zero	
•  The	calling	process	wants	to	wait	un6l	the	semaphore's	value	

becomes	0		
•  If	the	semaphore's	value	is	currently	0,	the	func6on	returns	

immediately	
•  Otherwise,	

–  If	IPC_NOWAIT	is	specified,	return	is	made	with	an	error	of	EAGAIN	
–  If	IPC_NOWAIT	is	not	specified		

•  The	semzcnt	value	for	this	semaphore	is	incremented		
•  The	calling	process	is	suspended	un6l	…	

–  The	semaphore's	value	becomes	0	,	the	semzcnt	should	be	increased	
–  The	semaphore	is	removed	from	the	system:	semop	returns	an	error	of	

EIDRM	
–  It	is	interrupted	by	a	signal:	semop	returns	an	error	of	EINTR	

Classical	IPC	 52	

Semaphore	Adjustment	on	
Termina6ng	a	Process	

•  We	have	men6oned	the	problem	
–  A	program’s	termina6on	without	releasing	semaphores	may	block	future	

access	to	the	resource	

•  The	problem	can	be	solved	by	the	UNDO	feature	
–  When	we	specify	the	SEM_UNDO	flag	for	a	semaphore	opera6on	
–  The	kernel	remembers	how	many	resources	we	allocated	from	that	

par6cular	semaphore		
–  When	the	process	terminates,	the	kernel	checks	whether	the	process	

has	any	outstanding	semaphore	adjustments,	i.e.,	the	value	is	>	0	
–  If	so,	applies	the	adjustment	to	the	corresponding	semaphore		

•  semval	is	increased	by	the	adjustments	

Classical	IPC	 53	

Shared	Memory	

•  Allows	two	or	more	processes	to	share	a	given	
region	of	memory		

•  This	is	the	fastest	form	of	IPC	
– The	data	does	not	need	to	be	copied	between	the	
client	and	the	server,	but	

– We	have	to	synchronize	access	to	a	given	region	
among	mul6ple	processes	
•  If	the	server	is	placing	data	into	a	shared	memory	
region,	the	client	should	not	try	to	access	the	data	

– Synchronizing	can	be	done	by	semaphores		

Classical	IPC	 54	

Shared	Memory	(Cont’d)	
•  Crea6ng	or	opening	a	shared	memory	
•  Synopsis	

–  int	shmget(key_t	key,	size_t	size,	int	flag);		
–  Returns:	shared	memory	ID	if	OK,	-1	on	error		
–  Upon	crea6ng,	the	least	significant	9	bits	of	semflg	define	the	

permissions	for	the	shared	memory	
–  flag	can	be	OR’ed	with	IPC_CREAT	and/or	IPC_EXCL	
–  The	actual	size	of	the	created	shared	memory	is	round	up	to	

mul6ples	of	the	PAGE_SIZE	(4096	bytes)	
–  When	a	shared	memory	is	created,	it’s	content	ini6alized	to	all	zero	

Classical	IPC	 55	

Shared	Memory	–	System	Limita6ons	

•  The	limita6ons	may	vary	on	different	plazorms	

– “ipcs	-l”	command	on	Linux	
– “ipcs	-M”	on	BSD	and	Mac	OS	X	

Classical	IPC	 56	

$	ipcs	-l	
	
...	
	
------	Shared	Memory	Limits	--------	
max	number	of	segments	=	4096	
max	seg	size	(kbytes)	=	18014398509465599	
max	total	shared	memory	(kbytes)	=	18446744073642442748	
min	seg	size	(bytes)	=	1	

Controlling	Shared	Memory	

•  The	internal	data	structure	associated	with	a	
shared	memory	

Classical	IPC	 57	

struct shmid_ds {
 struct ipc_perm shm_perm; /* Ownership and permissions */
 size_t shm_segsz; /* Size of segment (bytes) */
 time_t shm_atime; /* Last attach time */
 time_t shm_dtime; /* Last detach time */
 time_t shm_ctime; /* Last change time */
 pid_t shm_cpid; /* PID of creator */
 pid_t shm_lpid; /* PID of last shmat(2)/shmdt(2) */
 shmatt_t shm_nattch; /* No. of current attaches */
 ...

};

Controlling	Shared	Memory	(Cont’d)	

•  Synopsis	
–  int	shmctl(int	shmid,	int	cmd,	struct	shmid_ds	*buf);	
–  Returns:	0	if	OK,	-1	on	error	
–  Commands	

•  IPC_STAT:	Retrieve	the	internal	shmid_ds	data	structure	
•  IPC_SET:	Set	the	internal	shmid_ds	data	structure	

–  shm_perm.uid,	shm_perm.gid,	and	shm_perm.mode		
•  IPC_RMID:	Remove	the	shared	memory,	but	it	is	actually	
removed	un#l	the	last	process	using	the	segment	terminates	
or	detaches	it	

•  SHM_LOCK:	Make	the	shared	memory	not	swappable	
•  SHM_UNLOCK:	Make	the	shared	memory	swappable	

–  The	last	two	commands	can	be	only	used	by	superuser	

Classical	IPC	 58	

A}ach	a	Shared	Memory	

•  Synopsis	
–  void	*shmat(int	shmid,	const	void	*addr,	int	flag);		
–  Returns:	pointer	to	shared	memory	segment	if	OK,	-1	on	error	
–  The	addr	argument	

•  If	addr	is	NULL,	the	segment	is	a}ached	at	the	first	available	
address	selected	by	the	kernel	(*RECOMMENDED)	

•  If	addr	is	not	NULL	and	SHM_RND	is	not	specified,	the	segment	is	
a}ached	at	the	address	given	by	addr		

•  If	addr	is	not	NULL	and	SHM_RND	is	specified,	the	segment	is	
a}ached	at	the	address	given	by	(addr	-	(addr	modulus	SHMLBA))		
–  Round	down	to	the	mul6ples	of	SHMLBA	

–  The	flag	argument	
•  If	the	SHM_RDONLY	bit	is	specified	in	flag,	the	
segment	is	a}ached	read-only		

Classical	IPC	 59	

Detach	a	Shared	Memory	

•  Synopsis	
–  int	shmdt(void	*addr);		
– Returns:	0	if	OK,	-1	on	error		

Classical	IPC	 60	

Message	Queue	versus	Pipe	versus	
UNIX	Socket	

•  Difference	is	not	clear	
•  Message	queues	share	disadvantages	of	XSI	
IPC,	see	textbook	15.6.4	

CS5432	Advanced	UNIX	Programming	 61	

Semaphores	versus	Record	Locking	
versus	Mutex	

•  Observa6on	1:	Semaphore	may	be	overcomplicated	
•  Observa6on	2:	Record	locking	may	be	preferred	
because:	(i)	easier	to	handle	the	case	of	process	
termina6on	and	(ii)	process-shared	mutex	may	not	
be	supported	

CS5432	Advanced	UNIX	Programming	 62	

CS5432	Advanced	UNIX	Programming	 63	

