Department of Computer Science National Tsing Hua University

CS 2336: Discrete Mathematics Chapter 6

Languages: Finite State Machines

(Overview)

Instructor: Cheng-Hsin Hsu

Outline

- **6.1 Language: The Set Theory of Strings**
- **6.2 Finite State Machines: A First Encounter**
- 6.3 Finite State Machines: A Second Encounter

Powers of an Alphabet

- Alphabet Σ is a finite set of symbols
 - Conventionally, we do not list symbols that can be formed from other symbols!

- For a positive integer n, power of Σ is defined as:
 - $\Sigma^1 = \Sigma$
 - $\Sigma^{n+1}=\{xy|x\in\Sigma,y\in\Sigma^n\}$, where xy denotes the juxtaposition of x and y

• In general, $|\Sigma^n| = |\Sigma|^n$

Empty String and Words

- For an alphabet Σ , we let $\Sigma^0 = \{\lambda\}$, where λ is the empty string, which is the string contains no symbol from Σ
- Words (or sentences):

$$- \Sigma^{+} = \bigcup_{n=1}^{\infty} \Sigma^{n} = \bigcup_{n \in \mathbb{Z}^{+}} \Sigma^{n}$$

$$- \Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$$

• Ex 6.2: (a) $\Sigma = \{0, 1\}$, (b) $\Sigma = \{\beta, 0, 1, 2, \dots, 9, +-\times, /, (,)\}$

Equal and Length

Equal: If $w_1, w_2 \in \Sigma^+$, where $w_1 = x_1 x_2 \cdots x_m$ and $w_2 = y_1 y_2 \cdots y_m$, $w_1 = w_2$ if m = n and $x_i = y_i$ for all i

Let $w = x_1 x_2 \cdots x_n \in \Sigma^+$. We define the length of w to be n, and is denoted by ||w||

$$-\parallel\lambda\parallel=0$$

Concatenation

- Concatenation: For $x = x_1 x_2 \cdots x_m$ and $y = y_1 y_2 \cdots y_n$, the concatenation of x and y, written as xy, is the string $x_1 x_2 \cdots x_m y_1 y_2 \cdots y_n$
 - $-\lambda x_1 x_2 \cdots x_m = x_1 x_2 \cdots x_m = x$
 - What is λ ?
 - $-\lambda\lambda=\lambda$
- Power of x, $x^0 = \lambda$, $x^1 = x$, $x^2 = xx$, $x^3 = xx^2$, ...
 - $-x^{n+1} = ?$

Prefix and Suffix

- For $x, y \in \Sigma^*, w = xy$
 - x is a prefix of w
 - x is a proper prefix of w, if y is not the empty string
 - y is a suffix of w
 - y is a proper suffix of w if x is not the empty string

• If w=xyz, then y is called a substring of w. If one of x and y is not the empty string, then y is a proper substring

Language

- For a given alphabet Σ , any subset of Σ * is called a language over Σ
 - Including \otimes, which is called empty language

• Ex 6.8: Give examples of language over $\Sigma = \{0, 1, 2\}$

Concatenation

For two languages $A, B \subseteq \Sigma^*$, the concatenation of A and B, written as AB, is $\{ab | a \in A, b \in B\}$

 Note: We skip a few theorems in this section, interested readers are referred to the textbook

Outline

- **6.1 Language: The Set Theory of Strings**
- 6.2 Finite State Machines: A First Encounter
- 6.3 Finite State Machines: A Second Encounter

A Vending Machine

Table 6.1

	t ₀	t_1	t ₂	<i>t</i> ₃	t ₄
State	(1) s ₀	(4) $s_1(5¢)$	(7) $s_2(10¢)$	(10) s_3 (20¢)	(13) s_0
Input	(2) 5¢	(5) 5¢	(8) 10¢	(11) W	
Output	(3) Nothing	(6) Nothing	(9) Nothing	(12) P	

The numbers $(1), (2), \ldots, (12), (13)$ in this table indicate the order of events in the purchase of Mary Jo's package of peppermint chewing gum. For each input at time t_i , $0 \le i \le 3$, there is at that time a corresponding output and then a change in state. The new state at time t_{i+1} depends on both the input and the (present) state at time t_i .

Table 6.2

	t_0	t_1	t_2	
State	(1) s_0	(4) s_3 (20¢)	(7) s_0	
Input	(2) 25¢	(5) B		
Output	(3) 5¢ change	(6) S		

Finite State Machine

- A finite state machine is a five-tuple $M = (S, \mathcal{S}, \mathcal{O}, \nu, \omega)$
 - S: the set of internal states
 - \mathcal{S} : the input alphabet
 - \mathcal{O} : the output alphabet
 - $\nu: S \times \mathscr{S} \to S$: the next state function
 - $-\omega: S \times \mathscr{S} \to \mathscr{O}$: the output function

State (Transition) Table

Table 6.3

	ν		ω	
	0	1	0	1
s_0	s_0	s_1	0	0
s_1	s_0 s_2	s_1	0	0
$\begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$	s_0	s_1	0	1

Table 6.4

State	s_0	$\nu(s_0, 1) = s_1$	$\nu(s_1, 0) = s_2$	$\nu(s_2, 1) = s_1$	$\nu(s_1,0)=s_2$
Input	1	0	1	0	0
Output	$\omega(s_0, 1) = 0$	$\omega(s_1,0)=0$	$\omega(s_2, 1) = 1$	$\omega(s_1,0)=0$	

State Diagram

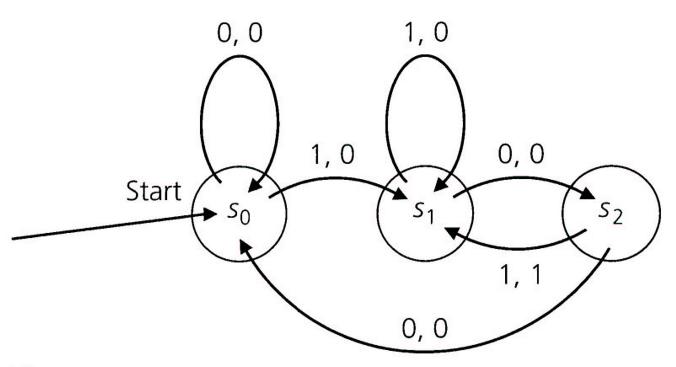


Figure 6.2

Outline

- **6.1 Language: The Set Theory of Strings**
- **6.2 Finite State Machines: A First Encounter**
- 6.3 Finite State Machines: A Second Encounter

Sequence Recognizer

Let input and output alphabets be $\{0, 1\}$. We want to construct a machine that recognize each occurrence of the sequence 111

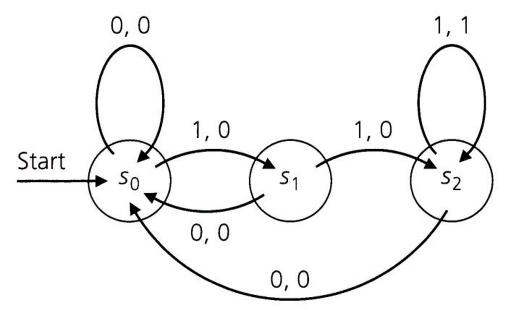


Figure 6.9

Sequence Recognizer (cont.)

An equivalent state diagram

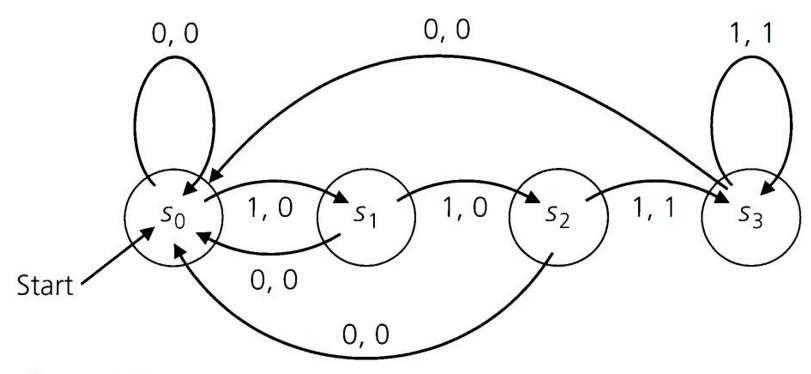


Figure 6.10

A Few Definitions

- Reachable: there is a string x so that $\nu(s_i, x) = s_j$
 - No state is reachable from s_3 except itself
- Transient: there is no string x so that $\nu(s_i, x) = s_i$
 - S_2 is the only transient state
- Sink: if $\nu(s_i, x) = s_i$ for all string x
 - S_3 is a sink
- Submachine and strongly connected

Illustrative Example

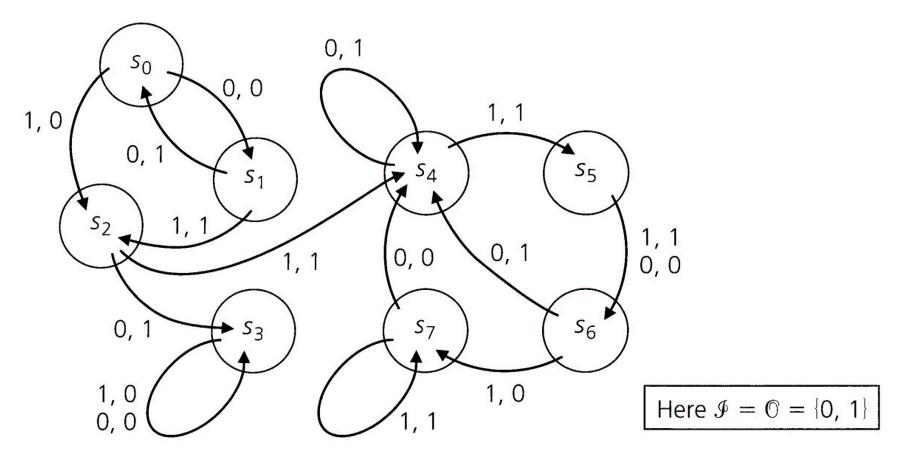


Figure 6.15